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PIXE.... / Applications e

Chemistry, medicine, biology, agriculture, industry, environmental pollution, archeology,
criminal investigations , and searches for mineral resources.
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Heavy charged particles + atoms

Excitation: First Born Approximation (function of charge and velocity of projectile)
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X-rays production in the sample.
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W
Notations (Siegbahn & IUPAC) of characteristic
X rays

Introduction to XRF
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Inner shell ionization according to velocity of
projectile

Vp=c

Photoelectric effect
(like interacts with a
virtual photon )

Rutherford Scattering Projectile interacts with

(closed collisions) the cloud.
(distant collisions)



Inner shell ionization energetic condition.

Electron is bound in an atom with an
average energy :

In head-on collision( projectile
+electron), the transfered energy
from projectile to electron is:

Therefore, the ionization condition is:

Always valid if:

m.v: Z.e?
2 T

E=2mV? 4+ 2mvV

U—2mV?2
2mV2 4+ 2myV > [ =) VZ—m
= 2mV

U = 2mp?
Electrons with large velocity are only ionized in the case
of low velocity projectiles in the vicinity of the nucleus

Therefore, the inner shell ionization cross section
M.V?2

drop with decreasing projectile energy, T = -




Inner shell ionization energetic condition.

M M
U=2mV?|. (=) E—) —U==V? o) 4am
2 2 Emax~ M T

4m m
W T = 2muv? —> Eeclectron ~M T

The ionization cross sections are maximized when the projectile velocity becomes
the same as the average velocity of the bound electron.

Al-K
proton |ﬂ
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Fluorescence yield.

I
we=—- K -shell.
Nk

Where: Ig- is the total number of X-rays K emitted on the

sample.

Ni-is the total number of vacancies on the K line.

L-shell and other fluorescence

yield.

Very complicated because non-radiative transitions
(COSTER_ KRONING) between sub-shells can occur.
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CONTINUOUS X-rays due ion-atom collisions

QUASI FREE ELECTRON BREMSSTRAHLUNG (QFEB)-
SECONDARY ELECTRON BREMSSTRAHLUNG (SEB)
ATOMIC BREMSSTRAHLUNG (AB)



A 4
Si(Li) semiconductor- Detection

Inelastic scattering between an energetic ion and a target atom can lead to inner shell ionization with
the subsequent emission of an X-ray.

ghe energy of the x-ray, which is characteristic of the excited atom, is detected by a solid state Si(Li)
etector.

Introduction to XRF

Si(Li) Detector
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PIN Diode Detector

Compact detectors

Be
Winduw‘%
CMOS él'llilil_tita{er
Preamp ollimator
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Cooling: Thermoelectrically cooled (Peltier)
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- Detector Window: Beryllium
2-Stage Count Rates: 3,000 — 20,000 cps
Thermoelectric 'v/\S“bs"at“- Resolution: 170-240 eV at Mn k-alpha
Cooler ™ £
s

;ﬂ-g’Q‘\%g/
mountingstud  Heart - 2 stage thermoelectrically cooled Si-PIN
photodiode (-55 °C).

internal multilayer collimator- to minimize background and

spectral artifacts.

The energy resolution - from 139 to 190 eV FWHM@ 5.9 keV (depending on the
detector area).

It is best - at count rates below 30 kcps.

It is suited to X-rays between 1.5 and 30 keV.

It uses a fully depleted 500 um Si-PIN photodiode.
It is available with 1 or 0.5 mil Be windows.

Introduction to XRF .
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Detection Limit

10°5 A Expenmental data
] f| total fit
: b d
a) It determined by the BG of the X-rays spectrum. s Erlo ﬂ:::ﬂd siilion
b) The main BG components produzed by proton
Impact is:

For Ep < 1.5 MeV- AB.
For 1.5 MeV- 2 MeV, AB+SEB

For Ep>3MeV, SEB+Compton tail BG of
gamma rays.

Counis

PIXE intrinsic detection limit (DL) is not very much below 1 ppm 100 —, : . . e e
(mg kg=") in a given matrix. It offers its maximum sensitivity in 2 4 & B 1015 16 17
two atomic number (Z) regions: 20 < Z < 30 and 75 < Z < 85. Energy [kaV]

Measurement errors are in the order of 10%, depending mainly

on the target preparation procedure and on the slight variability

ofy proton flux.




Experimental setup

The X-ray detection system, housed in the vacuum chamber, is generally a Si(Li) device, that combines the
advantage of high efficiency in the X-ray energy region of interest (usually 2-20 keV) with a good energy
resolution.
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Sample preparation

Target Ladder



Introduction to XRF

Powders;

Grinding (=400 mesh if possible) can minimise scatter affects due to particle size.
Additionally. grinding insures that the measurement i more representa tive ol the entire
sample. vs. the surface of the sample.

Pressing (hydraalically or manually) compacts more of the sample into the analvsis
ared, and ensures uniform density and better reproducibility..

Solids:
Orrient surfice patterns in same manner so a5 minimise scatter o Mects,
Polishing surfaces will also minimise scatter affects.
Flat samples are optimal for quantitative results.

Liguids:

Sam ples should be Fresh when analvsed and analvsed with short analvsis time - if sample
is evaporative,

Sam ple should not stratify doring o nalysis.

Sample should not contain precipitants/solids, analvsis could show settling trends with
time.
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Analysis

Qualitative Quantitative

T

Comparison
Absolute Method

Interaction point

o

R
Wil

X-ray DETECTOR



Quantification for thin target.

Q
NU= (E'SU)'NP' nZ GU
Where:

Ny(Z)-the number of counts bellow the peak of characteristic X-
rays ( v-line) for an element (atomic number- Z), obtained from spectra.

Q -solid angle subtended by the X-ray detector at the target.

gy-detection efficiency for the v-line of x-ray.

op-production cross section for v-line x-rays of element Z.

N,- Number of incident protons that hit the sample.

ny; —number of atoms per unit area at the sample of the element Z,

_ NAv.mZ
"=

With, N4y-isthe Avogadro’s Number; m,- is the quantity of interest (areal
concentration- [mass/area]) and Az- Atomic mass of the sample element.



How measure N,- Number of incident protons that hit
the sample?

Protons are positively charged; and we know the charge
carried by a proton (1,60210. 1071 C).

Therefore, the charge carried by N, protons is
Qp, [uC] = 1,60210. 10713, N,

. Direct Measurements ( FARADAY CUP+
charge integrator coupled directly to cup- thin samples,
or, the integrator is coupled directly to holder of
specimen for thick or conducting samples)

. Indirect measurements (RBS in carbon
backing)



About Gy - production cross section for L-line x-
rays of element Z.

Theoretical determination:
_The binary encounter approximation (BEA)
_The semi-classical Approximation (SCA)
_The Plane Wave Born Approximation (PWBA). v

PWBA has a good agreement with experimental data for K-shell, but for L- shel ionization
the situation is much less favorable.



Oy = Og. Wg. Ty

Where:

os- Inner ionization cross section (S=K, L, M,..). probability of an
electron is being removed of the shell by a proton impact.

wg - fluorescence yield.

ry-fractional radiative width of v-line X-rays.

The fractional radiative width r

Electron transitions in the atomic de-excitation are
governed by the following “selection rules”;

An2z 1
Al i1
Aj 1 or0

Where n, I and j are the principle, the orbital angular
momentum and the total angular momentum gquantum
numbers respectively. Although “forbidden transitions” are
observed but their probabilities are usually very small and
not of any significant. The electron that fills up the vacancy
in a particular inner shell may come from one of the many
outer shells allowed by the selection rules, but with
different probabilities which are often referred to as
fractional radiative widths.



Detection efficiency g,

The detection efficiency of a Si(Li) X-ray
detector is dependent on the X-ray
energy. It is wusually determined
theoretically using the parameters (i.e.

thicknesses of Si diode, Be window, gold
contact and Si dead layer) provided by
the detector manufacturer. However,
calibration standards are often used to
determined €, experimentally.




Si-PIN Detection Efficiency W
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Si-PIN: Recommended for applications requiring moderate energy resolution and count rate, where cost is most important. Si-PIN devices have a

conventional planar structure, yielding more electronic noise than an SDD but are easier to fabricate. There are three different Si-PIN variations currently

avdilablgPwith areas of 6 mm2, 13 mm2, and 25 mm2. The 6 mm2 detectors provide an energy resolution of 140 eV FWHM at the 5.9 keV Mn Ka line at
/ count rates up to 50k cps. The 13 mm2 and 25 mm2 detectors typically offer energy resolutions of 180 and 210 eV FWHM for the same count rates.

/
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In the PIXE measurements of intermediate and thick samples, the
bremsstrahlung BG can be large, especially in low energy region.

Therefore, we found POOR detection limits mainly for Light elements as
well as diminish the sensitivity for the detection of intermediate and high
Z elements.

Due that, plastic or metal filters of appropriated thickness are often
placed between specimen and the detector ( it reduces considerably the
BG at low energy region).

Now we need correct the expression for the areal concentration, by this
transmission factor which is function of the energy.

mz[=—] = (—) (—) (—) (—) (—) (—)

cm2



Internal Standard Method.
External Standard Method.

4T Ny

mzlespecimen] = () G () GO G

N gy

) (fit)

Unknown efficiency
mglespecimen]|  Nx(specimen)

my[standard] ~ Nyx(standard)

Analysis software, GUPIXwin (J.L Campbell, from Guelph)
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Introduction to XRF

Quantitative Analysis

/|

Intemit}-

XRF is a reference method,
standards are required for
quantitative results.

Standards are analysed,
intensities obtained. and a
calibration plot is generated
(intensities vs. concentration).

XRF instruments compare the
spectral intensities of unknown
samples to those of known
standards.

LearnXREF com



GUPIX

* Fit model-to-measure spectra demands knowledge of x-ray line intensities
database and modifications (relative to intrinsic values) by matrix effects.

* all peak energies and peak intensities have a data base of:
» energy lines and branching ratios

» production cross-sections

+ fluorescence

« proton stopping powers

 attenuation coefficients

* elemental densities

« atomic weights



4
Applications

Bi OIOg | Cal Ssamp | €S The sensitivity of PIXE analysis to H, C, N, and O is very low due to absorption in the detection window (usually Be film) of X-ray
detectors. Howevers, it is very high in the case of absorption of metallic elements and heavy elements in biological samples consisting of light elements as the main ingredients.

Counts/Channel

150 200 250 300 350 400 450
Channel Number

10" — L
50 100
C )

/ Peak separation of an X-ray energy spectrum of bovine liver obtained using 3 MeV proton PIXE. The continuous background in this figure consists of SEB and AB from carbon,

phosphorus, sulfur and potassium.
Peak fitting software is commercially available, such as GUPIXWIN (University of Guelph, Guelph, ON, Canada).

Murozono K.et al. PIXE spectrum analysis taking into account bremsstrahlung spectra. Nuclear Instrument and Method. Phys. Res B 1999, 150, 76-82
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PIXE spectrum of the whole blood of a healthy person.

7

The peaks of the elements Na, P, S, K, Cl, Ca, Cr, Fe,
Cu, Zn, Br, and Y were observed in this spectrum.

The Y element was contaminated in the sample as a
standard element.

Research revealed that changes in the concentrations
of metallic elements in the blood are strongly related
to aging and illness.

Changes in the concentration of Zn are strongly
related to disease.

It seems that the concentration ratio, Cu/Zn, of Cu and
Zn in blood is also closely related to health conditions.

The results of PIXE analysis in the blood of leukemia
patients showed that the concentration ratio of Cu/Zn
was four times larger than that of normal people.

It has also been reported that chronic articular
rheumatism affects the concentration ratios of
elements .

Ishii K., et al. Quantitative trace-Element analysis by proton-induced X-
rays. Nucl. Instr. Meth. 1975, 126, 75-80.



Characterize elemental composition of thin films of poly-dialydimethyl-amonium-cloride and poly-styrene-sulfonate.
Alis Rodriguez Manso/Cyclotron Lab of TAMU/USA. CAARI 2018. 25" Intern.Conference the Appl. Of Accelerators in
Research and Industry.

Pilot experiment using the K150 cyclotron

Matrix bombarded with a 3.6MeV p. beam, intensity ~ 2nA and beam spot
size of 5-10mm

Resulting x/Y-rays measured with SiPIN, SDD and CdTe detectors

At 450 with respect to beam direction.

CsBr standard

Calibration T \ T T I

@ Energy
g | = LinearFit 1800

Energy (keV)
L4,

Counts

0 30 60 90 120 150 180

Fe Ka Cu Ka, K Br Ka
Channel Number 2001 8

0 2 4 6 sl 10 12 4
E(Channel) = 0.055eV *Channel - 0.878eV Energy (KeV)

Sifpin detector calibration. Various peaks from the CsBr, KCI, InS CsBr standard, which noticeable elements include Al, Cs, Ca, Fe,
and NaCl standards were used. Cu and Br.




Environmental Samples.

Energy, keV
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Example of PIXE analysis of Shale (sedimentary rock) yielded a large range of
- elemental concentrations. Spectra are normally analyzed by comparison with a
/ simulated spectrum (as shown by the red spectrum on the right.)



COUNTS/CHANNEL

Air Sample. '

Mohri M., et al.Bulletin of Faculty of Engineering on Hokkaido University, Japan, 1983, vol 114: PIXE spectrum of airbone dust in Sapporo, Japan in April
1982
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PIXE, RBS and ICP-MS Analysis of a Moche
Archeological Artifact: Manfredo H. Tabacniks
Instituto de Fisica USP. J. Phys. D. Applied Phys. 36
(2003) 842-48.

* PIXE Particle Induced X-Ray Emission

« Concentracao absoluta (at/cm?2)

* Alcance (feixe com 2MeV): H+ ~30um

* Sensibilidade < 1012 Au/cm2 ou ~ppm bulk
 Alta resolucao para elementos vizinhos

* Rdpido (~10min)



PIXE - Example: Prussian Medal

e Prussian Medal, about 1790

Deutsches Historisches Museum, Berlin
e massive object?
gilded?
e t=200s,
I, ~0.1 pA
e result:

medal:
La/Ka = 1.09

1 pm Au-foil:
La/Ka ~ 40,
~75% Au
~15% Ag 5 10 15 20

~ 10% Cu Energy (keV)

-
=]
=

Intensity (arb. units)




Fake or Forgery?

The art market is flooded with fake paintings of 20™ century artists
_________such as ... Matisse, Modighani. Picasso ...

P hemn Hlllm lnld

X-ray spectrum indicated the use
of cerulean blue CoO-'n :Sn0O, a
pigment Modigliani did not use in
any other of his paintings =>forgery?

LearnXREF .com



Final remarks

PIXE: Particle Induced X-ray Emission

X-ray

lon Beam

Scattered lon beam

For high-Z elements
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