In search of lost symmetries

Maria Clara Nucci

University of Perugia & INFN-Perugia, Italy

VI CICLO DE SEMINARIOS DE FiSICA
COLEGIADO DE FISICA
Universidade Estadual do Sudoeste da Bahia
December 3, 2020, Itapetinga, BA



Outline

@ Linearization of (maximally) superintegrable systems by means
of hidden Lie symmetries.



Outline

@ Linearization of (maximally) superintegrable systems by means
of hidden Lie symmetries.



Outline

@ Linearization of (maximally) superintegrable systems by means
of hidden Lie symmetries.

@ Is Mechanics a branch of mathematical analysis?
The role of the Jacobi last multiplier: its connection with first
integrals, Lagrangians, and Lie symmetries.



Outline
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of hidden Lie symmetries.

@ Is Mechanics a branch of mathematical analysis?
The role of the Jacobi last multiplier: its connection with first

integrals, Lagrangians, and Lie symmetries.

@ Quantization through the conservation of Noether symmetries.
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The Hamiltonian

aun
2/3

t

H=1(p +p3) +

yields a superintegrable (maximally integrable) system

) . . 2aun . 1o
uy = p1, uz = p2, P1= —F73> P2 ===z
3uir’/3 uf/3

since there exist two independent integrals of motion [Post and
Winternitz, J.Phys.A.,2011], i.e.:

h 3pip2 + 2p; + 904“%/3131 + 6auzp2/(“f/3)z
_ 4 2 /0,23 1/3 2(0,,2 2y /(A3
b = pi+4auwpt/(uy””) —12u; apip2 — 2a°(9uy — 2u3)/(u,"”).
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The Hamiltonian

aun
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t

H=1(p +p3) +

yields a superintegrable (maximally integrable) system

2y . «Q

Uy = p1, Uy = p2, pP1= —%73: p2 = ——73
3uir’/3 uf/3

since there exist two independent integrals of motion [Post and
Winternitz, J.Phys.A.,2011], i.e.:

h = 3P%P2 + 2,03 + 9au%/3pl + 604U2PZ/(”$/3)>

h = pj+ 4au2p%/(uf/3) - 12u}/3ozp1p2 — 20°(9uf — 2u§)/(uf/3).

In MCN & Post, JPhysA 2012, we have determined the hidden
linearity of the Lagrangian equations.



The corresponding Lagrangian equations are
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5
M= at, = gtﬁt + ulau1 + U28u2.



The corresponding Lagrangian equations are

2cvup . «

i = Uy = ———.
5/37 2/3
3u/ ”1/

They admits a 2-dim Lie symmetry algebra A, generated by
5
M= at, = gtﬁt + ulau1 + UQau2.

Since system

. . . 2y . «
ui = p1, U = p2, pP1 = 5/3a P2 =———75z 2/3
3u; u3

is autonomous we can choose one of the dependent variables as
new independent variable, namely u; = y. Then

,:Pz o = 2acu . «Q
K pr’ L 3y5/8p,




Eliminating one of the dependent variables, e.g. from the second
equation ts = (3y°/3p;1p|)/(2a) and then the system becomes:

o — 2y3ap, — 5ypip; — 3y*p1pf? _a

' 3y2p} y23py
It admits a 10-dim Lie symmetry algebra isomorphic to the de
Sitter algebra o(3,2) generated by:

/
9 P> =

1 8 2 5/3 4 4.7/3 25/3 22
X1 = ————— ((Byps — 324 8748 — 972 )
1 9720223 (( yp) ay? p, + a’y a’y> 7 p1py)0y

5 4 .4/3
v/

+(19440°yp2py — 1080%y2/3p5 + 58320k P2)9py + (29160 y*/3py — 1S

+12060°yps — 24ay'/3p] + 43202y 3 py i + 32402y%/ 3 p3p2 + 1944a3p2pfy)a,,1) ,
1 2 5/3 3 7 25/3 2
X, = rrIETE] ((162a v¥/3p3 — 3yp + 48602y°/ 3 prp2)0),

+(81a?y?/3p} — 1458a*y*/® — 9720 yp1 p2) 0, + (21ay?/3pS — 486a°yp3

2 2.2 2.2 7
—4860°yp? — 270a%y /3p1p§ — 162a°y sznf + p1p2)8p1) s

L 2.5/3 2 6 2.2/3 3 3
X3 = W ((24304 3% / py — 3yp;)dy + (54a”y / py — 486 yp1)0p,

2 2 3 1 2.2 2
+(p1pS — 8la?y /3p1 + 18ay /3p§ — 162a°y /3p1p2)6p1) ,

1 4 5/3 2 2 2/3 1/3 3 4
Xy = W((3ypz+162y/a )9y + (54a2y?/3py — 12"/ apz*mpz)apl),

3 2.2/3 2 1/3 3
m (73yp28y + 27a’y / 9p, + (9p2y BB +P1P2)6p1) N
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1
36a2y2/3

1
5402y2/3 ((

((54y52a2 — 3yp)0), + 36> 220,
+(p3pr — 18y*3a’p; + 12y1/3ap§)6p1) :
162y%/302py — 3yp3)d, + 54p3y*/3a2a),,
+(p1p5 + 15y 3aph — 1620y — 54y*/3ap1p2)d, )
5275390, ~ P10y,

(ot )

3 p2/3 (3yp28 - (6y1/3a + p1P2)ap1) )

which implies that system (1) is
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Xg
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Xio

1
36a2y2/3

1
54a2y2/3 ((

((54y52a2 — 3yp)0), + 36> 220,
+(p3pr — 18y*3a’p; + 12y1/3ap§)6p1) :
162y%/302py — 3yp3)d, + 54p3y*/3a2a),,
+(p1p5 + 15y 3aph — 1620y — 54y*/3ap1p2)d, )
5275390, ~ P10y,

(ot )

3 p2/3 (3yp28 - (6y1/3a + p1P2)aP1) )

which implies that system (1) is linearizable!!!



Here is system (2) again:

v 2yY3ap, — Byp?p| — 3y2ppf? B
pP1 = 2.2 ) p2 -
3y“pi

From the second equation p; = —a/(y%/3pb) yields

/11

1
= W <6_y / p2p y +4Oé2 /2+9O[ pép2y+27oz2 /12 2) .

This equation admits a 7-dim Lie symmetry algebra generated by

1/3 3

y1/3p5+5402yp, y1/3p3 15402y
20y + Oy, Y27T28 + 20,,2 Y37Tay,
1/3
- 22 5, + P20y, Y5 =130y, Yo =y

Y = V3p0,, vy = y'/3p30,

Thus it is linearizable (10-dim Lie algebra are its contact symm.)

J=p2, po=3y*+

1 .4
%a2P2



Here is system (2) again:

o — 2y*3ap, — 5ypip; — 3y>p1pP o=
1 — ’ 2~ T T5/3
3y2p2

From the second equation p; = —a/(y?/3pb) yields

/1

1
P = 5o (69" papBy? + 4020 + 92 phply +27a%pi2y?)
a=pyy

This equation admits a 7-dim Lie symmetry algebra generated by

1/3 .3 1/3.5 1/3 4 2
_ Yy _ Y p2+54a P2 2 _ y/7py+h4acy
Yl_—m—ay+8p2, Y2—T8 + 5 0py, Y3 = 0,

5402 t
/34

Yo = =120, + P20y, Y5 =y /30y, Yo = /3

P28y, Y7 = y'/3p20,.

Thus it is linearizable (10-dim Lie algebra are its contact symm.)

N d*p,
J=p2 =3y + 5Pt = e

=0



Since y = u and up = (3y%/3p1p})/(2a) then the 10-dim Lie
symmetry algebra is obtained:

((324uz/3o¢3p§ — 3u§/3o¢p€23 — 8748ufo¢5 + 972u7/3a3p§pf)8ul

n = Vior+ 1
97

20¢3uf/3

(5832022 pla® — 25202u2pS — 58320 uPuy — ut/*pSp? — 240 3plpy
5/3 2/3 2 4
/ / p

—2auf/3p§u2 — 3888u; p2a4u2p1 — 12961 4/3 3

e ug — 648u; pgoz uzpf
4/3 4 3 7/3 3 3
—648u1/ pyoup + 1944u1/ Py F'l){?u2

+(24ua?py — 2916020 pr + v aplpr — 12060330t p3

4/3 3 4 4/3 3 2 3 5/3 4 2
—43201 30 plpy — 320020 p2p3 — 19840372 0% pyp2 )0y

-%—(108pgu‘11/3oz3 - 5832p2u%a5 — 1944p§uf/3a4p1)8p2) s

1
L = Voor + — 3 ((73u§/3p;a + 162u3/3pga3 + 486UZ/3p2a3pf)6u1
486()¢3u1

+(or2u] P26 py — 21002 plpy — 202 3 plu, + 145865 20t p,

7972u?/3a4u2p1 — 648uf/3a4u§p2 — 189p§u2uf — u‘l‘/3p;pf

4/3 3 2 4/3 3 3 P
—324u1/ p2a upy — 432u1/ pya uz)du2

+(uf/3ap;p1 + 21u1a2pg - 486uf/3a4p§ — 486uf/3o¢4p$ - 270u4/3a3pgp1

1
4/3 4/3 3 4

3
—16201 26 pop2) 0y + (81030 p} — 14580205 — o720}/ a4p2p1)8p2) ,
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7/3 3 2 5/3 6
V30r + —————= ((243u;" " a”py — 3uy’ “apy)Ouy
243a3u‘1‘/3 (
4/3
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4/3 3 4/3 3 7/3
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2/3 4/3 3 3 25 4/3 3 2
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4/3 4/3
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4/3 3 2/3 4 2 3
+(54uy %oy — i Papipn — 12u102p3)0), ) ,
1/3 3
P: 2 5/3 3 2/3
V58 — -1 22 v~ 73 ((szaul/ pP1 +2p2au1/ up
9a 27a3u1/

2 2 3 4/3 2 3 2/3 2 2
+27pra’uy + qul/ P1)0u, — (P2”1/ apy + 9pyura )0,,1) + Op,

1 7/3 3 5/3 4
V6ot + ———7= ((54u; "a” — 3u] apz)aul
36043u11‘/3 (

5/3 3 2/3 4 2 2 2 4/3 4 2
7(12au1/ P> P1 +2o¢u1/ pyuz + 54pya”uy + ”1/ p2pl)8,;,2
2/3 4/3 3
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2 3
+( apgpl —18u;" a’py + 12 pz)apl) + P20p,y

7/3 5/3
V70 + ((162u1/ p2a3 - 3u1/ pga)aul

54a3uf/3

7(15p3auf/3p1 + Zpgau

+(uf/

2/3 3 22 4/3 5 2
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3 2 4 5/3 4 4/3 3 2
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2/3 2
g = Vgdr+ (3o¢u18u1 + (Quya + ”1/ P1)0u, — oaplapl) s

1
2/3
3oy

/

2/3 2
o = Voor+ (3aU1p28u1 + (Bapiur + 2cuzpy + Uy’ " p2pi)Ou,
3

1
2/3
DtUl
1/3 2
—(ap2p1 +3u1/ a )6p1) s

/ /3

1
1/3 2 5/3 2 2
Mo = Vo0 + ”1/ P30u; + 374/3 ((6ocp1p2u1 +2apyuy’ Tup
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1

4/3 2/3
+9a2u? + prgul/ )u, — apa(6aur + P1P2'—'1/ )3p1) .

Each Vo = Vi (t, u1, ua, p1, p2), (k = 1, ..., 10), satisfies:

48612202V, + 4860573 0% py Viy + 486132 0% py Viy + 324033V, — 486031 V)

a1 (urp§ — 648ur aduyp? + 5832u] 20t — 648ul/ 2a2p2p? — 37857302

5/3 5/3
—c2(648u1a3u2p2 + 2u1pZ + 648u1/ angpf + 432u1/ ang)

4
P2)

+C3(4U1pg — 648u1a3ug - 648ui/3a2p% — 324uf/3a2p§)
—C4(u1pg + 54ui’/3a2) + 36u1pgc5 + C5(27u1pg - 972ui/3a2)

+er(18u1pl — 194402 36 py) — 324u1alcg — 32402 pyucy — 324u1apicip = 0

with ¢, = 1 and all the other ;4 = 0,(j =1, ..., 10).
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In Fris, Mandrosov, Smorodinsky, Uhli¥ and Winternitz, Phys.Lett.
A, 1965 the following Hamiltonians were considered

2
P
H:%(P%+P§)+V(X1,X2)/ H:% <p3+r§> +V(r,<p),

and it was proven that only four independent potentials exist such
that two quadratical integrals of motion exist.
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In Fris, Mandrosov, Smorodinsky, Uhli¥ and Winternitz, Phys.Lett.
A, 1965 the following Hamiltonians were considered

2
P
H:%(,D%‘FP%)‘FV(XL)Q)/ H:% <p2+r§> +V(r799)7

and it was proven that only four independent potentials exist such
that two quadratical integrals of motion exist.

In we have proven that
the corresponding Lagrange equations can be linearized through
hidden symmetries. N.B. Regardless of separability in the
Hamilton-Jacobi equation, as shown in
CONJECTURE:

ARE ALL SUPERINTEGRABLE SYSTEMS LINEARIZABLE

IN 2-DIMENSIONAL SPACE?
hiae nnearizapiiity tnrougn symmetries Dy raising tne order.



TTW system: raising the order
The potential is

L, K B1 B2
V(r¢)=wr’+ <c052(k(p) M sin2(k<p)) '

The Lagrangian equations are:

4k? b1 B2
= —ASr g’ 4 r3 (cosz(kgo) + sin? (kap)) ’
L 2k 4k3 (51 sin (kgo) B cos(kgp))
T T A Uos? (k) sin (kg) /)

They admit a three-dimensional Lie symmetry algebra generated
by:
Y1 =0¢ Xp=cos(dwt)0; — 2wsin(4wt)ro,,

Y3 = sin(4wt)0; + 2w cos(4wt)roy,



By solving the Lagrangian equations with respect to $; and (o,
and then taking the derivative with respect to t, the following
system of two equations of third order is obtained:
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r'e 4 16w%f +3FF =0, (%)

cos(kp) sin(kg)r?  + 3 cos?(kp)kr? g

+ 6 cos?(kp)krig? + 8 cos(ky) sin(kp)ak?r?¢

— 4 cos(ky) sin(kp)k?r?p® 4 4 cos(kyp) sin(kp)k?rig

+ 6 cos(ky) sin(kp)rig + 2 cos(ky)sin(ke)rig

+ 6 cos(ky) sin(kp) g — 3sin?(kp)krpg — 6sin?(kp)krig? = 0. (%)



By solving the Lagrangian equations with respect to $; and (o,
and then taking the derivative with respect to t, the following
system of two equations of third order is obtained:

rE 4+ 16w +3FF =0, (%)
cos(kp) sin(kg)r?  + 3 cos?(kp)kr? g
+ 6 cos?(kp)krig? + 8 cos(ky) sin(kp)ak?r?¢
— 4 cos(ky) sin(kp)k?r?p® 4 4 cos(kyp) sin(kp)k?rig
+ 6 cos(ky) sin(kp)rig + 2 cos(ky)sin(ke)rig
+ 6 cos(ky) sin(kp) g — 3sin?(kp)krpg — 6sin?(kp)krig? = 0. (%)
The first equation admits a 7-dim Lie sym algebra generated by:
X1 = 0¢, Xo = cos(4wt)d; — 2w sin(4wt)roy,
X3 = sin(4wt)0; + 2w cos(dwt)rd,, Xq = M@,,

X5 = Maﬁ Xe = ro,, X7 = %0,, and consequently it is
linearizable.



By solving the Lagrangian equations with respect to $; and (o,
and then taking the derivative with respect to t, the following
system of two equations of third order is obtained:

rE 4+ 16w +3FF =0, (%)
cos(kp) sin(kg)r?  + 3 cos?(kp)kr? g
+ 6 cos?(kp)krig? + 8 cos(ky) sin(kp)ak?r?¢
— 4 cos(ky) sin(kp)k?r?p® 4 4 cos(kyp) sin(kp)k?rig
+ 6 cos(ky) sin(kp)rig + 2 cos(ky)sin(ke)rig
+ 6 cos(ky) sin(kp) g — 3sin?(kp)krpg — 6sin?(kp)krig? = 0. (%)
The first equation admits a 7-dim Lie sym algebra generated by:
X1 = 0¢, Xo = cos(4wt)d; — 2w sin(4wt)roy,
X3 = sin(4wt)0; + 2w cos(dwt)rd,, Xq = M@r,
X5 = Maﬁ Xe = ro,, X7 = %0,, and consequently it is
linearizable. A 2-dim nonabelian intransitive subalgebra is
< Xg, X7 >, that yields v = r?/2 and thus ' = —16w?d. Finally
r = /a1 + ax cos(4wt) + a3 sin(4wt).




Also the second equation (**) is linearizable since it admits a
7-dim Lie symmetry algebra generated by:

— cos?(kp)sy(t) + 2ks3(t)
2 cos(ky)sin(kyp)k

with s1, sp, s3 that satisfy the following seventh-order linear system:

9:51(t)at+ 89;,

r? 51 + 45 Fk%r — 44 Fr + 16§ k2w r? — 8FFk’s;
+ 8Ffsy — 32Fk?w?sir + 32fw?s r = 0,

r2$y — 5102 + 281rF + 2risy — 2f%s; = 0,

1253+ 653Fr + 453Fk2r + SFr + 653F% + 1653k°w?r? = 0.
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— cos?(kp)sy(t) + 2ks3(t)
2 cos(ky)sin(kyp)k

with s1, sp, s3 that satisfy the following seventh-order linear system:

9:51(t)at+ 89;,

r? 51 + 45 Fk%r — 44 Fr + 16§ k2w r? — 8FFk’s;
+ 8Ffsy — 32Fk?w?sir + 32fw?s r = 0,

r2$y — 5102 + 281rF + 2risy — 2f%s; = 0,

1253+ 653Fr + 453Fk2r + SFr + 653F% + 1653k°w?r? = 0.



Also the second equation (**) is linearizable since it admits a
7-dim Lie symmetry algebra generated by:

— cos?(kp)sy(t) + 2ks3(t)
2 cos(ky)sin(kyp)k

with s1, sp, s3 that satisfy the following seventh-order linear system:

9:51(t)at+ 89;,

r? 51 + 45 Fk%r — 44 Fr + 16§ k2w r? — 8FFk’s;
+ 8Ffsy — 32Fk?w?sir + 32fw?s r = 0,

r2$y — 5102 + 281rF + 2risy — 2f%s; = 0,

1253+ 653Fr + 453Fk2r + SFr + 653F% + 1653k°w?r? = 0.



Also the second equation (**) is linearizable since it admits a
7-dim Lie symmetry algebra generated by:

— cos?(kp)sy(t) + 2ks3(t)
2 cos(ky)sin(kyp)k

with s1, sp, s3 that satisfy the following seventh-order linear system:

9251(t)8t+ 89;,

r? 51 + 45 Fk%r — 44 Fr + 16§ k2w r? — 8FFk’s;
+ 8Ffsy — 32Fk?w?sir + 32fw?s r = 0,

r2$y — 5102 + 281rF + 2risy — 2f%s; = 0,

1253+ 653Fr + 453Fk2r + SFr + 653F% + 1653k°w?r? = 0.

< —ﬁ cot(kp)0,, sz)(% > is a 2-dim nonabelian intransitive

subalgebra. Then the second equation (**) becomes linear by

means of the canonical transformation v = —ﬁ COSz(kcp), ie.
6r 2
V= =2 5 (3 4 8K (2K 1)) v

r r2



More hidden linearity
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linearity of all Darboux spaces of Type |-IV Kalnins, Kress, Miller,
Winternitz,, J.Math.Phys., 2003, and Bertrand-Perlick Perlick,
Class. Quant. Grav., 1992, Riglioni, J.Phys.A, 2013.
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More hidden linearity
In G.Gubbiotti & MCN, 2020 we have determined the hidden
linearity of all Darboux spaces of Type |-IV Kalnins, Kress, Miller,
Winternitz,, J.Math.Phys., 2003, and Bertrand-Perlick Perlick,
Class. Quant. Grav., 1992, Riglioni, J.Phys.A, 2013. In Evans,
Phys.Rev. A, 1990, four Hamiltonians were derived. In MCN &
R.Campoamor-Stursberg, 2020 we have proved that they all hide

linearity. For example,

k1 w1 k2 k3
H=i(R+pB+p)+—em _ fe Jo
W22 W12 + W22 W2 w3
N.B. Its Hamilton-Jacobi eq is NOT separable in cartesian
coordinates yields the Hamilton equations

) . . . k1
Wy =p1, W2=Pp2, W3=P3, PlL="7T"5 5275
(wf +w3)3/2
k1W1(2W12 + 3W22) 2ko . 2k3
p2 = 5 pP3 = .
wi(wf +w3)¥2 w3 w3

2k
Then p3 =3 — W3 = 737
W3



2k
Solving vz = —33 with respect to k3 and deriving once with
w.

3
respect to t, yields:
. 3wz w3
w3 =———,
w3
which admits a 7-dim Lie symmetry algebra generated by
Xl - t28t + tW38W37 X2 - tah X3 = ata X4 - W38W3a
2
t t 1
X5 - 70W37 X6 - 78W37 X7 - 78W37
w3 w3 w3
and therefore it is linearizable. In fact, the new dependent variable
u = w2 /2 transforms it into the linear equation

u =0,

and thus the general solution is

A2 + 8k
ws = 4/ A1t? + Aot + g,
4A1

with A,, (n = 1,2) arbitrary constants.



About the other four equations of the Hamilton H3 system:
k1

wi=p1, WwW2=p2, p1= _Wv
k1W1(2W12 + 3W22) 2k2
R O R R
we make the simplifying substitution wo = /r5 — wi.
Then, deriving p; we obtain,
i = —
1= 3
Deriving p> we obtain:
Py — W12 22 B 2W1 Wy W12r23 + 2kywy + 2/(2!‘2'
AB-wd) B-wi 2R )

The system wy, r, admits a 3-dim Lie symmetry algebra s/(2,R)
generated by:

t20r 4+ tw10y, + tradp,, 2tdy + w10y, + 10r,, O



If we solve system

. ky
wp = ——

3

I

2
.. W12f22 2W1 Wl fg v'v12r23 + 2/(1 wiy + 2/(2!’2
rn = —

n(r22 —w?)  r22 — wi r2(r22 — w?)

with respect to ki, ko and derive once, we obtain:

3wy
wp = ——,
wi

3raf

ro = s

r

namely both wy and rp satisfy the same equation as ws.

)



If we solve system

. ky
Wi = ——

3

I

2
.. W12 22 2W1 Wlfg v'v12r23 + 2/(1 wiy + 2/(2!’2
rn = —

n(r22 —w?)  r22 — wi r2(r22 — w?)

with respect to ki, ko and derive once, we obtain:

3wy wn
w1 = — ’
w1

3raf

ro = s

r

namely both wy and rp satisfy the same equation as ws.
Consequently, the transformations u; = w? /2, uy = r5 /2 yield:

)



If we solve system

. ky
W = ——

3

r

2
. wiis Qwivinis  W2r3 + 2kawy + 2kor
rn = —

n(r22 —w?)  r22 — wi r2(r22 — w?) ’

with respect to ki, ko and derive once, we obtain:

3wy wn 3
w1 = — y rog=— )
w1 r2

namely both wy and rp satisfy the same equation as ws.
Consequently, the transformations u; = w? /2, uy = r5 /2 yield:

Indeed, the Hamiltonian system Hs hides (three times) the linear
equation v = 0.



If we solve system

. ky
wp = ——=

3

I

2
.. W12f22 2W1 Wlfg v'v12r23 + 2/(1 wy + 2/(2/’2
rn = —

n(r22 —w?)  r22 — wi r2(r22 — w?) ’

with respect to ki, ko and derive once, we obtain:

3wy 3raf

CONJECTURE:
ARE ALL MAXIMALLY SUPERINTEGRABLE SYSTEMS IN 3-DIM

LINEARIZABLE?

Indeed, the Hamiltonian system Hs hides (three times) the linear
equation v = 0.



Lagrange vindicated

In the Avertissement to his " Méchanique Analitique” (1788)
Joseph-Louis Lagrange (1736-1813) wrote:

The methods that | explain in it require neither constructions
nor geometrical or mechanical arguments, but only the algebraic
operations inherent to a regular and uniform process.

(tr.

by J.R. Maddox:)




Lagrange vindicated

In the Avertissement to his " Méchanique Analitique” (1788)
Joseph-Louis Lagrange (1736-1813) wrote:

The methods that | explain in it require neither constructions
nor geometrical or mechanical arguments, but only the algebraic
operations inherent to a regular and uniform process.

(tr.

by J.R. Maddox:)

It is a joke, isn’t it??!!



Jacobi last multiplier
(Jacobi, 1842-45)

n

of
Af = Z a,-a—Xi =0 (%)
i=1

% _dx dx,

al—zz...:an. (*‘k)
8(f,w1,w2, e ,w,,_l) — MAF
O(x1, X2,y Xn)
wi, (i =1,...,n—1) solutions of (x) ie first integrals of (*x)

n

o(Ma;) dlog(M) 0a;
2 ox; 0« dt Z Ox;




Jacobi last multiplier
(Jacobi, 1842-45)

n

of
Af = Z a,-a—Xi =0 (%)
i=1

dxg  dxo dx,
e . (%)
dl an an
8(f,w1,w2, NN ,w,,_l) — MAF
O(x1, X2,y Xn)
wi, (i =1,...,n—1) solutions of (x) ie first integrals of (*x)
"\ 9(Ma;) dlog(M) 0a;
Z ox; 0« dt Z Ox;

i=1
IMPORTANT PROPERTY:

M
Vz = First Integral



Enter Lie

[Lie, 1874]
dxq dxo dxp
1 a an

If there exist n — 1 symmetries of (xx), say
I',-:f,-jc‘)xj, i:].,n—].

then JLM is given by M = A~!, provided that A # 0, where

dl dnp
A—det| M S
gnfl,l to gnfl,n

Corollary: if 3 M=const, then A is a first integral.



How many Lagrangians does one know?

There is a link between a Jacobi Last Multiplier M and a
Lagrangian L [Jacobi, 1842-45], [also in Whittaker, 1904].

Jacobi's Lectures on Dynamics (1884) are available in English:

tr. by K. Balagangadharan, ed. by Biswarup Banerjee,
Hindustan Book Agency (2009), available through AMS

For a second-order ODE the link is:
9%L
— = M. 1

Consequently a knowledge of the multipliers of a system enables
one to construct a number of Lagrangians of that system.

How many??



How many Lagrangians does one know?

There is a link between a Jacobi Last Multiplier M and a
Lagrangian L [Jacobi, 1842-45], [also in Whittaker, 1904].

Jacobi's Lectures on Dynamics (1884) are available in English:

tr. by K. Balagangadharan, ed. by Biswarup Banerjee,
Hindustan Book Agency (2009), available through AMS

For a second-order ODE the link is:
9%L
— = M. 1

Consequently a knowledge of the multipliers of a system enables
one to construct a number of Lagrangians of that system.

How many??
0?L

N.B.: For a single ODE of order 2n the link is MY/" = ——
2(g)

(Jacobi, J. Reine Angew. Math. 29 (1845) p.364)



A very simple example

Let us consider the one-dimensional free particle X =0, i.e.:

X1:X2

xp =10
Lie symmetry algebra s/(3,R):
X1 = xtO; + x%0y, Xo = x0¢, Xz =t20; + xtdy, Xa = x0x,
X5 = t0y, Xe=0¢ X7=10y, Xg=Ok.
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A very simple example

Let us consider the one-dimensional free particle X =0, i.e.:
X1 = Xo
X =0
Lie symmetry algebra s/(3,R):
X1 = xtO; + x%0y, Xo = x0¢, Xz =t20; + xtdy, Xa = x0x,
X5 = t0y, Xe=0¢ X7=10y, Xg=Ok.

JLM,'J' — 1/A,‘j, X,' and )(J
For example JLMyg = —1/x by means of X, and Xg such that:

1 X2 0
Agg=det | 0 x1 x0 | = —x0 = —x.
0 1 0



Ten Lagrangians

Ten different JLM and consequently as many Lagrangians:

1 dg
Mz = — Liz=————"—+—(t
B (tx — x)3 = M3 2t2(t>'<—x)+dt( X)
1 X . .
Mis = Xt = )2 = Lis= 2 (log(tx — x) — log(x))
1 tx 1
- - Lie= [ = —2) (log(x) — log(tx —
Mo = cr—y = L= (55— 1) (og(i) ~log(ex —x)
1
M7 = — L17 = ——=log(tx —
17 (t% — x)? = L7 5 log(tx — x)
1 1 :
Mlg— — = L13— ——Iog(x)— - — — Iog(tx—x)
x(tx — x) ’ t



1

M62—;

1

Mst;

1

Mg = tx — x
1

M48—_;

=

b2 = 5

Log = —log(x)

L3g <’; - ’;) (log(tx — x) — 1)
Log = %(1 — log(x))



Msg = ——- =

Mg7:1 =

1

Lgr = —
627 2%
Ly g = —log(x)
X X .

Las = X(1 — log(x))

1.2
L877 = 53X

FINALLY, THE TRUE LAGRANGIAN
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How do we (physically) eliminate 9 out of 10?7

ﬁr ir ir ir ir ir ﬁr ﬁr ﬁr ir

@ They differ by the number of Noether symmetries that they
admit.

@ The physical Lagrangian admits the maximum number of
Noether symmetries, i.e. FIVE.
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b

ERWIN SCHRODINGER EMMY NOETHER
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corresponding continuity equation for the probability
density;

(ii) the description using a time propagator, also called
Feynman kernel or space representation of the Green
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(iii) the time-dependent Wigner function.

All three methods were shown to be linked by the Ermakov
invariant in D. Schuch & M. Moshinsky, Phys.Rev.A, 2006.



Which Quantization?

Different methods exist to describe the dynamics of quantum
systems, among them:

(i) the time-dependent Schrodinger equation with the
corresponding continuity equation for the probability
density;

(ii) the description using a time propagator, also called
Feynman kernel or space representation of the Green
function:

(iii) the time-dependent Wigner function.

All three methods were shown to be linked by the Ermakov
invariant in D. Schuch & M. Moshinsky, Phys.Rev.A, 2006.
Therefore we pursue the quantization of classical problems by
searching for a time-dependent Schrodinger equation.



How to obtain the Schrodinger equation from
Noether symmetries |
Gg=0
L = 4% admits five Noether symmetries:

X1 =01, Xo = 0g, X3 = tdg, Xa = 2t0; + q0q, X5 = t20; + tq0y.



How to obtain the Schrodinger equation from
Noether symmetries |
G=0
L = 4% admits five Noether symmetries:
X1 =01, Xo = 0g, X3 = tdg, Xa = 2t0; + q0q, X5 = t20; + tq0y.
The Schrodinger equation
admits 5 4+ 1 + co Lie symmetries:

Y1 =X1, Ya=Xo, Y3=X3+iq0y, Ya= Xa,
Ys = Xs + 3(iq? — t)10y.

plus ¥0y and «o(t, q)0y s.t. 2iay + ogg =0



Marcos Moshinsky

He was used to say [K.B. Wolf, J. Phys.: Conf. Ser. 237 (2010)]:



Marcos Moshinsky

He was used to say [K.B. Wolf, J. Phys.: Conf. Ser. 237 (2010)]:

Two types of problems exist in quantum mechanics, those
that you cannot solve and the harmonic oscillator. The trick
is to push a problem from one category to the other.
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How to obtain the Schrodinger equation from

Noether symmetries |l

X = —w?x

L = 3(x* — w?x?) admits 5 Noether symmetries:
X1 = 0 Xo = cos(2wt)0: — wxsin(2wt)dy,
Xz = sin(2wt)0: + wx cos(2wt)dy, X4 = cos(wt)dy,
X5 = sin(wt)0k.
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How to obtain the Schrodinger equation from

Noether symmetries |l

X = —w?x

L = 3(x* — w?x?) admits 5 Noether symmetries:
X1 = 0 Xo = cos(2wt)0: — wxsin(2wt)dy,
Xz = sin(2wt)0: + wx cos(2wt)dy, X4 = cos(wt)dy,
X5 = sin(wt)dx.
The Schrodinger equation (with 2 = 1)
20 + Pxx — W2X2¢ =0
admits the 5 4+ 1 + co dimensional Lie symmetry algebra:
Yi = Xi, Ya= X+ w(sin(2wt) — 2iwx? cos(2wt) )y,
Ys = X3 —w(cos(2wt) — 2iwx? sin(2wt))hdy,
Ya = Xg—2iwxsin(wt)dy, Ys = X5+ 2iwx cos(wt)dy.

2

plus 0y and a(t, x)0y s.t. 2ias + ax — w2x2a =0
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Quantizing with Noether: Act 1
MCN, Theor.Math.Phys., 2011

@ Find the Lie symmetries of the Lagrange equation

T = Wo(t,x)0r + Wi(t, x)0x
@ Find the Noether symmetries

= Vo(t, x)0r + Va(t, x)0x, reT



Quantizing with Noether: Act 1

PRI

MCN, Theor.Math.Phys., 2011 '
@ Find the Lie symmetries of the Lagrange equation u,,
T = Wo(t, x)0: + WA(t, x)0x ‘

@ Find the Noether symmetries

= Vo(t, x)0r + Va(t, x)0x, reT

@ Construct the Schrodinger equation admitting those Lie
symmetries

2ithe + A (X )V + R2(X)0x + fB(x)Y =0

Q = Vo(t,x)0r + Va(t, x)0x + G(t,x, )0y



Quantizing with Noether: Act 1

PRI

MCN, Theor.Math.Phys., 2011 '
@ Find the Lie symmetries of the Lagrange equation u,,
T = Wo(t, x)0: + WA(t, x)0x ‘

@ Find the Noether symmetries

= Vo(t, x)0r + Va(t, x)0x, reT

@ Construct the Schrodinger equation admitting those Lie
symmetries

2ir + A(X) Y + R(X)x + B(x)Y = 0
Q = Vo(t,x)0r + Va(t, x)0x + G(t,x, )0y
o N.B. ¢6¢ and W(t,X)@w



Quantizing with Noether: Act 1

@ Find the Lie symmetries of the Lagrange equation

T = Wo(t,x)0r + Wi(t, x)0x
@ Find the Noether symmetries
= Vo(t,x)0r + Vi(t, x)0x, reT™

@ Construct the Schrodinger equation admitting those Lie
symmetries

2 + A(X)hxx + 2(X)Yx + B(x)Y =0

Q = Vo(t,x)0r + Vi(t, x)0x + G(t, x, )0,
QUANTIZE PRESERVING THE SYMMETRIES!
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M = 0Ok, Mo =e (0 + 2cud,) M3 = e (9y — 2cudy).
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The Lagrangian with those 3 Noether symmetries is
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An example from population dynamics
MCN & G. Sanchini, Symmetry, 2016 Equation

admits a 3-dim Lie (complete) symmetry group: % %%
M = 0Ok, Mo =e (0 + 2cud,) M3 = e (9y — 2cudy).
The Lagrangian with those 3 Noether symmetries is
02 c 2c
L= —— - — —
Vu <4cu3 N u K>

and the Schrodinger equation is

2
2ithy 4+ 1Pty — (77 - 4Cu ) Y=

with : A =T1, No=T2+4ce” (; + 41\}) POy,
(G

A3 =3+ ce <—+4\Cf Oy -



Charged particle in a uniform magnetic field

Its classical Lagrangian is

1, . . : .
L= 5 (3 + y?) + w(yx — xy))
and consequently the Lagrangian equations are

X = —wy, y=wxX.

()



Charged particle in a uniform magnetic field
Its classical Lagrangian is

1, . : : :
L= (¥ +5%) +wlyx - xy)) (2)
and consequently the Lagrangian equations are
X = —wy, y=wxX.
The Lagrangian (2) admits 8 Noether symmetries generated by
X, = cos(wt)d; — g (sin(wt)x + cos(wt)y) Ay
—i—% (cos(wt)x — sin(wt)y) dy,
1
Xo = —sin(wt)o — 5 (cos(wt)wx — sin(wt)wy) Oy

- % (sin(wt)wx + cos(wt)wy)dy,

Xz = 0¢, Xs=—-yox+x0,, Xs=—sin(wt)dy+ cos(wt)d,,
Xe = —cos(wt)dy —sin(wt)d,, X;=0,, Xg=0k.



The Schrodinger equation was determined by Sir Charles Galton
Darwin, Proc. R. Soc. Lond. A, 1927 to be

2
2ithe + o + by — iw(ythx — xiby) — %(X2 +y* ) =0. (3)



The Schrodinger equation was determined by Sir Charles Galton
Darwin, Proc. R. Soc. Lond. A, 1927 to be

2

2ithe + o + by — iw(ythx — xiby) — wf(X2 +y* ) =0. (3)

4

It admits the 8 + 1 4 co dim Lie symmetry algebra, i.e.:

Y1
Yo
Y3
Ye

Ys

1
X1+ 5 (2sin(wtw — i cos(wt)w? (< + y2)) Oy,
1
X + 2 (2 cos(wt)w + isin(wt)w?(x* + y2)) Dy,
1
X3, Ya=2Xi, Ye=Xs— @ (x cos(wt) + y sin(wt)) Dy,

1 .
Xe + FW (xsin(wt) — y cos(wt)) Oy, Y7 =X7+ éwx8¢,
Xs— =

2wy8¢7 (4)

plus ©0y and «(t, x,y)0y s.t. « satisfies (3).
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MCN, J. Nonlinear Math.Phys., 2013
@ Find the Lie symmetries of the Lagrange equations

N

T = W(t,&)at + Z Wk(t,ﬁ)axk ‘

k=1




Quantizing with Noether: Act 2 __

MCN, J. Nonlinear Math.Phys., 2013
@ Find the Lie symmetries of the Lagrange equations

N
T= W(t,g)f)t + Z Wk(t,ﬁ)axk
k=1

@ Find the Noether symmetries

N
M= V(t,x)0+ > Vi(t,x)dy, TCT
k=1



Quantizing with Noether: Act 2 _

MCN, J. Nonlinear Math.Phys., 2013
@ Find the Lie symmetries of the Lagrange equations

N

7‘;‘{’ i
T = W(t,x)0: + Z Wi(t, x)0x, ‘

k=1

@ Find the Noether symmetries

N
M= V(t,x)0+ > Vi(t,x)d, TCT
k=1
@ Construct the Schrodinger equation admitting those Lie
symmetries

2ithy + Z i (X) U + Z hi(X) s, + f3(x)1 = 0

kj=1
N
Q= V(t,x)0: + Y Vi(t, x)0x, + G(t,x,%)dy
k=1



Quantizing with Noether: Act 2 _

MCN, J. Nonlinear Math.Phys., 2013
@ Find the Lie symmetries of the Lagrange equations

N

7‘;‘{’ i
T = W(t,x)0: + Z Wi(t, x)0x, ‘

k=1

@ Find the Noether symmetries

N
M= V(t,x)0+ > Vi(t,x)d, TCT
k=1
@ Construct the Schrodinger equation admitting those Lie
symmetries

2ithy + Z i (X) U + Z hi(X) s, + f3(x)1 = 0

kj=1
N
Q= V(t,x)0: + Y Vi(t, x)0x, + G(t,x,%)dy
k=1



Q

Quantizing with Noether: Act 2

@ Find the Lie symmetries of the Lagrange equations

N %
T = W(t,x)0: + Z Wi(t, x)Ox, ‘

k=1

@ Find the Noether symmetries

N
M= V(t,x)0+ > Vi(t,x)d, TCT
k=1
@ Construct the Schrodinger equation admitting those Lie
symmetries

2ithy + Z i (X) U + Z hi(X) s, + f3(x)1 = 0

kj=1

UANTIZE PRESERVING THE SYMMETRIES!




N charged particles in a uniform magnetic field

MCN, Theor.Math.Phys., 2016 In complex variables the Newtonian

eqs are:
Fo=iwk, (k=1,...,N).
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MCN, Theor.Math.Phys., 2016 In complex variables the Newtonian
egs are:
fx = iwfk, (k=1,...,N).

Among many Lagrangians, let us consider the following:
exp (—iwt) N
LO = Z I,
k=1

that admits (N2 + 3N + 6)/2 Noether symmetries.



N charged particles in a uniform magnetic field

In complex variables the Newtonian
egs are:
fx = iwfk, (k=1,...,N).

Among many Lagrangians, let us consider the following:
. N
exp(—iwt) B
k=1

that admits (N2 + 3N + 6)/2 Noether symmetries.
Yet there is another time-independent Lagrangian:

N .
1, - Iw , . <z
[ = E <2rkrk + Z(I’krk — rkrk)>
k=1

that also admits (N2 + 3N + 6)/2 Noether symmetries.



Replacing
rk = Xk + Yk, Tk = Xk — Yk

into the Lagrangian L one gets:
Noq .

and the Lagrangian equations are:

Xk = —WYk, Yk = WX.



Replacing
e = Xk + Yks Tk = Xk — iyk
into the Lagrangian L one gets:

N
I w, . .
L = Z <2(XE +yf) + E(kak — Xkyk)> ,

k=1

and the Lagrangian equations are:
Xk = —WYk, Yk = WXk.

Then the Schrodinger equation that can be obtained by preserving
the symmetries is:

2

2”/}1‘—"_2 <1/}kak + w}/k)’k + Iw(ykqpxk Xk/(/))’k)

k=1

(Xk + Yk)¢> =0.



Replacing
e = Xk + Yks Tk = Xk — iyk
into the Lagrangian L one gets:

N
I w, . .
L = Z <2(XE +yf) + E(kak — Xkyk)> ,

k=1

and the Lagrangian equations are:
Xk = —WYk, Yk = WXk.

Then the Schrodinger equation that can be obtained by preserving
the symmetries is:

2

2”/]7?—"_2 <1/}ka/< + w}/k)’k + Iw(ykqpxk Xk/(/))’k)
k=1

(Xk + Yk)¢> =0.

2 . . .
% + 1 + oo dimensional Lie

Indeed, this eq. admits a
symmetry algebra.



A simplification: the role of s/(N + 2, R)

In G.Gubbiotti & MCN, J. Nonlinear Math.Phys., 2014, if the N
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A simplification: the role of s/(N + 2, R)

In , if the N
Lagrangian equations admit a (N? + 4N + 3)-dim Lie symmetry
algebra, s/(N + 2,R), namely they are linearizable by a point
transformation, then we simplified the algorithm as follows:

@ Find the linearizing transformation.

@ Derive the Lagrangian that admits the maximum number of
Noether symmetries by applying the linearizing transformation
to the natural Lagrangian of the corresponding linear system.

@ Derive the Schrodinger equation by applying the linearizing
transformation to the Schrodinger equation of the
corresponding linear system.

See also



Harmonic oscillator on a double cone
G.Gubbiotti & MCN, J. Nonlinear Math.Phys., 2017
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symmetries, and the corresponding Lagrangian equations

F= kgt §=-2"0 ()
admit a 15-dim Lie symmetry algebra.
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Harmonic oscillator on a double cone
G.Gubbiotti & MCN, J. Nonlinear Math.Phys., 2017
N.B.: m =1, opening angle 2o, € (0, %) ,k =sin(a)
The Lagrangian Ly, = % (r'2 + k2r2¢2) — %w2r2 admits 8 Noether
symmetries, and the corresponding Lagrangian equations
F=Kk2rg? —w?r, ¢ = —2@ (»)
admit a 15-dim Lie symmetry algebra. Thgn, the transformation
u=rcos(kg), v =rsin(ke) ()
yields:
i+w?u=0, V+w’v=0,
a two-dim harmonic oscillator in (v, v). If we apply the linearizing
transformation () to: 2iv: + Uy, + v, — w? (0 + v?)p =0,
then the Schrodinger equation corresponding to system (#) is

. 1 1
2+~ 55 V06 — w?r?y = 0.



Noether symmetries of the Lagrangian:
Lho = % (r'2 + k2r2<b2) — %w2r2

l'g = 0g, Mg = 0, Mo = cos(2wt)d; — wsin(2wt)roy,
M1 = sin(2wt)0; + w cos(2wt)roy,

12 = cos(wt) (cos(kg)d, — & sin(kg)dy),

13 = sin(wt) (cos(ke)dr — £ sin(ke)dy),

14 = cos(wt) (sin(ke)0; + 1 cos(k)dy),

15 = sin(wt) (sin(k$)dr + £ cos(ke)Dy).



Noether symmetries of the Lagrangian:
Lho = 5 (r + k2r2¢? ) — §w2r2

Mg =0y, Tg =0, Mo = cos(2wt)dy — wsin(2wt)roy,
M1 =sin(2wt)0: +w cos(2wt)r8r,

12 = cos(wt) (cos(ke)d, — I L sin(k¢)0,),

13 = sin(wt) (cos(k¢)d, — S|n(k¢)0¢)

14 = cos(wt) (sin(ke)0; + 1 cos(k)dy),

15 = sin(wt) (sin(k$)dr + £ cos(ke)Dy).

Lie symmetries of the Schrodinger equation:

. 1 1
21wt+wrr+;wr+mw¢¢—w rz’(ﬁ =0

Q1 =g, =T9,Q3 =0+ w (sin(2wt) — 2i cos(2wt)wr?) 1y,
Q4 =11 — w (cos(2wt) + 2isin(2wt)wr?) ¢y,

Qs = o — iwrsin(wt) cos(k$)Oy,,

Q6 = 13 + iwr cos(wt) cos(kp) 0y,

Q7 =14 — iwrsin(wt) sin(k$) Oy,

Qg = 15 + iwr cos(wt) cos(kp)dyy.



Who is right?
K. Kowalski, J. Rembielriski, Annals of Physics, 2013 took the
usual angular momentum py = —i0y and looked for self-adjoint
operators of the type p, = —i (0, + F(r)), with respect to the
scalar product (f, g) = 027rff°oo f*g|r| drd¢, on the space of
square integrable functions f(r, ®), g(r, ¢) on the cone. This yields
that the self-adjoint operator is p, = —i (8, + %) and
consequently their Schrédinger equation is:

. 1 1 1
20 + Yy + ;’(Ur + W’u)¢¢ — (4-!‘2 + w2r2) P =0.
The additional term —4% breaks the symmetries, i.e. four out of

eight symmetries are not preserved.
Also (p € Z):

En=w<2n+§\/1+4,fz2+l> VS. En:w(2n+%+1).

Further insight is needed especially from the experimentalists.
However...



DeWitt’s approach

Introducing the self-adjoint momentum operators as defined in
Bryce Seligman DeWitt, Phys. Rev., 1952, i.e.:

R (0 ;
=i +7%)

with I'j:k the contracted Christoffel symbols, yield the same angular
Py = —idy and radial momenta p, = —i (8, + %) given by K&R.
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DeWitt’s approach

Introducing the self-adjoint momentum operators as defined in
Bryce Seligman DeWitt, Phys. Rev., 1952, i.e.:

. WA
=i %)

with I'j:k the contracted Christoffel symbols, yield the same angular
Py = —idy and radial momenta p, = —i (8, + %) given by K&R.
However, the Hamiltonian operator shall include an extra quantum
mechanical potential Q, "which must be added to the covariant
classical Hamiltonian in order to produce the covariant quantum
Hamiltonian” as stated by DeWitt.

Adding this potential @ means to eliminate the symmetry-breaking
term —1//4r?, and consequently the quantization method that
preserves the Noether symmetries of the classical problem
corresponds to DeWitt's approach.



Noether vs Schrodinger

Applying Noether's theorem yields that L3, Lep and Lg7 admit five
Noether point symmetries. The main difference among the three
Lagrangians is that they admit different Noether point symmetries.
Which Schrodinger-type equations are obtained??:

1. .
Lg7 = §x2 = 2/t + e =0
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Noether vs Schrodinger

Applying Noether's theorem yields that L3, Lep and Lg7 admit five
Noether point symmetries. The main difference among the three
Lagrangians is that they admit different Noether point symmetries.
Which Schrodinger-type equations are obtained??:

1. .
Lg7 = §x2 = 2/t + e =0

1 .
Leo = % = 2ithx + Y =0
X
1

Liz=—— = t° 2t. 2 =0
1,3 2t2(X — D-() 7#tt + thx + x wxx

821/1

= ¢ = 8t2(t§)_0

l~+\><



Noether vs Schrodinger

Applying Noether's theorem yields that L3, Lep and Lg7 admit five
Noether point symmetries. The main difference among the three
Lagrangians is that they admit different Noether point symmetries.
Which Schrodinger-type equations are obtained??:

Loy =35 =5 2ife+ 1 =0

Leo = % = 2i)x + Y =0
Lis= 2t2(xl_tx) s P+ 2xtb + X2 = 0
:s—j:iﬁ(t,ﬁ)—a

EITHER INVERT TIME WITH SPACE
OR GO BACK TO CLASSICAL MECHANICS !
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@ Find the Lie symmetries of the Lagrange equations
N
T =W(t,x)0 + > Wi(t,x)dy,
k=1

@ Find the right Noether symmetries

N
M= V(t,x)0:+ > Vi(t,x)dy, TCT
k=1
@ Construct the Schrodinger equation admitting those Lie
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Quantizing with Noether: Final Act (?)

@ Find the Lie symmetries of the Lagrange equations
N
T=W(t,x)0:+ Y Wi(t,x)0x,
k=1

@ Find the right Noether symmetries

N
F=V(t,x)0:+ > Vi(t,x)dy, TCT
k=1

@ Construct the Schrodinger equation admitting those Lie
symmetries

N N
2ius + Z fi (X) U + Z hi(X)uy, + f3(x)u =0
kj=1 k=1

N
Q=V(t, )0+ Y Vi(t, x), + G(t,x,u)dy

QUANTIZE PRESERVING THE RIGHT SYMMETRIES!




Quantizing with Noether: Final Act (?)

@ Find the Lie symmetries of the Lagrange equations
N
T =W(t,x)0 + > Wi(t,x)dy,
k=1

@ Find the right Noether symmetries

F=V(t,x)0:+ > Vi(t,x)dy, TCT
k=1

@ Construct the Schrodinger equation admitting those Lie
symmetries

2/ut+kaJ uXXk—Fth Jux, + 3(x)u=0
kj=1

QUANTIZE PRESERVING THE RIGHT REPRESENTATIONI



Final Remarks
We have exemplified different instances where Noether's first
theorem plays a fundamental role: finding conservation laws, going
from classical to quantum mechanics, eliminating 'ghosts’. Also,
we have shown that Noether symmetries are ubiquitous, namely
they exist even for systems without a Lagrangian.
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We have exemplified different instances where Noether's first
theorem plays a fundamental role: finding conservation laws, going
from classical to quantum mechanics, eliminating 'ghosts’. Also,
we have shown that Noether symmetries are ubiquitous, namely
they exist even for systems without a Lagrangian. Of course, our
examples are not exhaustive of the many fields where Noether's
theorems can be used. In the last 100 years, many mathematicians,
physicists, and mathematical physicists have applied Noether's
theorems in their research. And in the next 100 years?

William Morris (1893): The past is not dead, but is living in us,
and will be alive in the future which we are helping to make.




