Saulo Diles

Universidade Federal do Pará - Campus Salinópolis

14 de outubro de 2021 VII CICLO DE SEMINÁRIOS DE FÍSICA - UESB -ITAPETINGA - BA

Faculdade de Física UFPA - Campus Salinópolis

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 2 QCD Hologáfica e o espectro de mésons
- 3 O caminho para descrever mésons pesados

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 4 O modelo de Contreras, Diles e Vega
- 5 Comentários Finais

Sumário

- 2 QCD Hologáfica e o espectro de mésons
- 3 O caminho para descrever mésons pesados
- 4 O modelo de Contreras, Diles e Vega
- 5 Comentários Finais

Breve história do Quarkonium

- Na década de 60 temos o modelo de quarks: a princípio haveria os quarks up(u) e down (d), além do quark strange (s).
- Mmodelo de quarks exige parceiro para o quark s, foi então especulado um novo quark: o charm (c).
- Em 1971 o méson associado ao quark charm é descoberto, sendo chamado de charmonium ou J/Ψ, que é mais de três vezes mais pesado que o φ.
- Em 1974 é descoberto o méson associado Υ, quase três vezes mais pesado que o J/Ψ, associado a um novo e ainda mais pesado quark: o bottom ou beaty (b).
- O parceiro do quark bottom é o quark top (t), muito mais pesado. Não forma mesons estáveis.

Espectroscopia do Charmonium

Charmonium $(J/\Psi, \Psi',)$							
Estado	Massa(MeV)	Cte de Dec. (MeV)					
15	3096.91 ± 0.01		5.547 ± 0.046		416 ± 2		
25	3686.11 ± 0.01		2.359 ± 0.114		296 ± 7		
35	4040 ± 1		0.86 ± 0.23		187 ± 22		
4 <i>S</i>	4421 ± 4		0.58 ± 0.07		160 ± 9		

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Espectroscopia do Bottomonium

Bottonium $(\Upsilon, \Upsilon',)$							
Estado	Massa(MeV)		Cte de Dec. (MeV)				
15	9460.3 ± 0.26		1.2856 ± 0.09		715 ± 2		
2 <i>S</i>	10023.26 ± 0.32		0.62 ± 0.02		497 ± 2		
35	10355.2 ± 0.5		0.443 ± 0.008		430 ± 2		
45	10579.4 ± 1.2		0.25 ± 0.03		370 ± 9		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Por que holografia?

- 1 Em baixas energia a QCD é fortemente acoplada.
- QCD na rede é uma boa alternativa, mas existem problemas em temperatura finita.
- 3 A dualidade AdS/CFT (1997) permite cálculos analíticos em sistemas fortemente acoplados.
- 4 O cálculo de η/s (2001) indica que a dualidade pode sim ser aplicada à "problemas do mundo real".

└─QCD Hologáfica e o espectro de mésons

Sumário

- 2 QCD Hologáfica e o espectro de mésons
- 3 O caminho para descrever mésons pesados

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 4 O modelo de Contreras, Diles e Vega
- 5 Comentários Finais

QCD Hologáfica e o espectro de mésons

Modelos AdS/QCD consolidados

■ Hard Wall: Polcinsk/Strassler, Braga/Boschi-Filho → corte IR na direção Holográfica z ∈ (0, z_{HW}), onde usamos as coordenadas de Poincaré do AdS:

$$ds^2 = rac{R^2}{z^2} (\eta_{\mu
u} dx^{\mu} dx^{
u} + dz^2).$$

- Hardwall descreve: espalhamento profundamente inelástico, glueball, estado fundamental de mésons leves.
- **Softwall**: 2006-Karch, Katz, Son, Stephanov \rightarrow acopla os campos do AdS com dilaton $\phi(z) = k^2 z^2$.
- Softwall descreve bem: espectro de massas das excitações radiais de mésons leves.
- O que os modelos não descrevem: mésons pesados. Limitado para massas, falha com constantes de decaimento.

└─QCD Hologáfica e o espectro de mésons

Detalhes matemáticos

O operador de interesse é o produto de correntes $\langle J^{\mu}(x)J^{\nu}(0)\rangle$, onde $J^{\mu} = \bar{q}\gamma^{\mu}q$ é dual ao campo vetorial em 5 dimensões:

$$A_m = (A_\mu, A_z) \leftrightarrow J^\mu_c(x) = \bar{c} \gamma^\mu c$$

Ação do campo dual no AdS₅ :

$$S[A] = -\frac{1}{2g_5^2} \int d^4 x dz F_{\mu\nu} F^{\mu\nu}.$$
 (1)

Função de partição da teoria da fronteira:

$$Z_{CFT}[A^0] = e^{-S_{onshell}[A^0]}, \quad A^0(x^{\mu}) = \lim_{z \to 0} A(x^{\mu}, z).$$
(2)

O produto de correntes é obtido por

$$\langle J^{\mu}(x)J^{\nu}(y)\rangle = \frac{\delta}{\delta A^{0}_{\mu}(x)} \frac{\delta}{\delta A^{0}_{\nu}(y)} Z_{CFT}[A^{0}]$$
(3)

QCD Hologáfica e o espectro de mésons

Espectro de méson no modelo Soft-Wall

Tomamos a função de correlação no espaço de momentos:

$$\int d^4 x e^{iq \cdot x} \langle J_{\mu}(x) J_{\nu}(0) \rangle = \left(\eta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2} \right) \Pi(-q^2).$$
 (4)

No modelo de parede macia obtém-se

$$\Pi(-q^2) = \sum_{n=1}^{\infty} \frac{2k^2/g_5^2}{-q^2 - 4k^2n^2} = \sum_n \frac{f_n^2}{(-q^2) - m_n^2}.$$
 (5)

Dai segue que:

$$m_n^2 = 4k^2 n, \quad f_n = \frac{k}{\pi\sqrt{2}}.$$
 (6)

O modelo soft-wall prevê spectro de massas Regge linear e constantes de decaimento degeneradas.

O caminho para descrever mésons pesados

Sumário

- 2 QCD Hologáfica e o espectro de mésons
- 3 O caminho para descrever mésons pesados

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 4 O modelo de Contreras, Diles e Vega
- 5 Comentários Finais

Escalas de energia

- A principal limitação do modelo de parede macia se dá por termos uma única escala de energia k.
- Massas e constantes de decaimento requerem ao menos duas escalas de energia: massas no infra-vermelho (z → ∞), constantes de decaimento no ultra-violeta (z → 0).
- O primeiro trabalho a discutir estas escalas de eneria em holografia se deve a Grigoryan, Hohler and Stephanov: arXiv:1003.1138.
- Este trabalho motivou uma sequência de investigações sobre o uso da holohrafia para oe studo da espectroscopia de mésons pesados.

Parede macia com corte UV

 Uma proposta interesante é introduzir um corte ultravioleta no modelo de parede macia. A ação do modelo fica

$$S[A] = -\frac{1}{2g_5^2} \int d^4x \int_{z_0}^{\infty} dz e^{-k^2 z^2} F_{\mu\nu} F^{\mu\nu}.$$
 (7)

- Este tipo de proposta foi considerada pela primeira vez por Evans e Tedder em 2006: arXiv:hep-ph/0609112.
- Em 2014, este modelo foi proposto por Braga, Contreras e Diles como um modelo para mésons pesados: arXiv:1507.04708
- O trabalho de 2006 não era de nosso conhecimento.
 Posteriormente, verificamos que os resultados de Evans e
 Tedder tinham um problema e com o dicionario holográfico.

O caminho para descrever mésons pesados

Parede macia com corte UV

$$\Pi(-q^2) = \frac{e^{-k^2 z_0^2}}{2g_5^2} \frac{U\left(1 + \frac{q^2}{4k^2}, 0, k^2 z_0^2\right)}{U\left(\frac{q^2}{4k^2}, 0, k^2 z_0^2\right)}.$$
(8)

 Os polos de Π(-q²) em -q² = χ_n determina o espectro de massa enquanto que as constantes de decaimento são obtidas pelos resíduos

$$m_n^2 = 4k^2\chi_n, \quad f_n^2 = \lim_{-q^2 \to m_n^2} (-q^2 - m_n^2)\Pi(-q^2), \quad n = 1, 2, 3...$$

 A escolha de parâmetros que melhor descreve os dados observados é:

$$k_c = 1.2 GeV; \ k_b = 3.4 GeV; \ \frac{1}{z_0} = 12.5 GeV.$$
 (9)

O caminho para descrever mésons pesados

Resultados: espectro à temperatura zero

Bottomonium $(\Upsilon, \Upsilon',)$						
Estado Massa Cte de decaiment						
15	7011	627				
25	9883	574				
35	12077	538				
4 <i>S</i>	13923	512				

Charmonium $(J/\Psi, \Psi',)$					
Estado	Massa	Cte de decaimento			
1 <i>S</i>	2410	258.8			
2 <i>S</i>	3409	251.7			
3 <i>S</i>	4174	245.9			
4 <i>S</i>	4819	241.0			

・ロト ・西ト ・ヨト ・ヨー うへぐ

O caminho para descrever mésons pesados

Resultados: Temperatura Finita

_

~ -

. . .

Bottomonium Melting Process

O caminho para descrever mésons pesados

Resultados: Temperatura Finita

Charmonium Melting Process

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

O caminho para descrever mésons pesados

Dilaton Modificado

 Charmonium: sobrevive à altas temperaturas, o modelo apresentado prevê charmonium dissociado em "baixas temperaturas".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dilaton Modificado

- Charmonium: sobrevive à altas temperaturas, o modelo apresentado prevê charmonium dissociado em "baixas temperaturas".
- Guia para o modelo à temperatura finita: $T_{melting} \sim f_{1S}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dilaton Modificado

- Charmonium: sobrevive à altas temperaturas, o modelo apresentado prevê charmonium dissociado em "baixas temperaturas".
- Guia para o modelo à temperatura finita: $T_{melting} \sim f_{1S}$.
- Proposta de N. Braga, L. Ferreira e A. Vega: modelo de softwall modificado pela adição de um termo extra no dilaton (arXiv:1709.05326 e arXiv:1802.02084).

Dilaton Modificado

- Charmonium: sobrevive à altas temperaturas, o modelo apresentado prevê charmonium dissociado em "baixas temperaturas".
- Guia para o modelo à temperatura finita: $T_{melting} \sim f_{1S}$.
- Proposta de N. Braga, L. Ferreira e A. Vega: modelo de softwall modificado pela adição de um termo extra no dilaton (arXiv:1709.05326 e arXiv:1802.02084).
- Dilaton proposto:

$$\Phi(z) = k^2 z^2 + Mz + tanh\left(rac{1}{Mz} - rac{k}{\sqrt{\Gamma}}
ight), \ z \in (0,\infty).$$
 (10)

O caminho para descrever mésons pesados

Espectro do modelo de Braga, Ferreira e Vega

Fixando os parâmetros do modelo como

$$k = 1.2 GeV, M = 2.7 GeV, \sqrt{\Gamma} = 0.75 GeV,$$
 (11)

obtém-se o espectro:

Charmonium $(J/\Psi, \Psi',)$						
Estado Massa Cte de decaiment						
15	2943	399				
2 <i>S</i>	3959	255				
3 <i>S</i>	4757	198				
4 <i>S</i>	5426	169				

Temperatura Finita: Pico do Charmonium sobrevive à temperaturas da ordem de $360 \sim 420 MeV$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

└─O modelo de Contreras, Diles e Vega

Sumário

- 2 QCD Hologáfica e o espectro de mésons
- 3 O caminho para descrever mésons pesados

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 4 O modelo de Contreras, Diles e Vega
- 5 Comentários Finais

└─O modelo de Contreras, Diles e Vega

Massas e a escala não-linear

- O espectro de massas dos mésons leves são bem aproximados por trajetórias tipo Regge linear.
- O espectro de massas dos mésons pesados NÃO é do tipo Regge linear.
- Espectro de massas está associado com o comportamento do dílaton no IR.
- A solução deste problema foi discutida por Contreras e Vega em 2020 (arXiv:2004.10286).
- Essencialmente, o espectro de massas de mesons constituidos de quarks pesados é bem descrito pelo dilaton
 Φ(z) = (kz)^{2-α}, com 0 ≤ α < 1.

└─O modelo de Contreras, Diles e Vega

Montando o quebra-cabeças

- O dilaton que descreve as massas dos mésons pesados é uma modificação do dilaton quadrático: (kz)² → (kz)^{2−α}.
- Por outro lado, o termo $Mz + tanh\left(\frac{1}{Mz} \frac{k}{\sqrt{\Gamma}}\right)$ nos permite uma descrição das constantes de decaimento.
- A primeira modificação é dominante no IR, enquanto a segunda é dominante no UV.
- Juntando as duas propostas de modificação, obtemos um modelo completo para o espectro dos mésons pesados com o dilaton:

$$\Phi(z) = (\kappa z)^{2-\alpha} + M z + \tanh\left[\frac{1}{M z} - \frac{\kappa}{\sqrt{\Gamma}}\right].$$
(12)

Este modelo foi proposto por Contreras, Diles e Vega em arXiv:2101.06212.

└─O modelo de Contreras, Diles e Vega

Espectro do Charmonium

	Charmonium States $I^G(J^{PC}) = 0^+(1^{})$								
Parameters: $\kappa =$			$\kappa = 1.8 \text{ GeV}$	$\kappa = 1.8~{\rm GeV},~M = 1.7~{\rm GeV},~\sqrt{\Gamma} = 0.53~{\rm GeV}$ and $\alpha = 0.54$					
$[n]$ State $[M_{Exp} (MeV) M_{Th} (MeV)$					f_{Exp} (MeV)	$f_{\rm Th}~({\rm MeV})$	%f		
1	J/ψ	3096.916 ± 0.011	3140.1	1.42	416.16 ± 5.25	412.4	1.4		
2	$\psi(2S)$	3686.109 ± 0.012	3656.9	0.9	296.08 ± 2.51	272.7	8.0		
3	$\psi(4040)$	4039 ± 1	4055.7	0.4	187.13 ± 7.61	201.8	7.8		
4	$\psi(4415)$	4421 ± 4	4376	0.9	160.78 ± 9.70	164.1	2.0		
	Nonlinear Regge Trajectory:				= 8.097(0.39 + i)	$n)^{0.58} { m GeV}^2 { m w}^2$	ith $R^2 = 0.999$		

Figure: Espectro das excitações radiais do Charmonium

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

└─O modelo de Contreras, Diles e Vega

Espectro do Bottomonium

	Bottomonium States $I^G(J^{PC}) = 0^+(1^{})$							
Parameters: $\kappa = 9.9 \text{ GeV}$,				$M = 2.74 \text{ GeV}, \sqrt{\Gamma} = 1.92 \text{ GeV} \text{ and } \alpha = 0.863$				
$\ n\ $ State $\ M_{Exp}$ (MeV) $ M_{Th}$ (MeV)					f_{Exp} (MeV)	$f_{\rm Th}~({\rm MeV})$	%f	
1	$\Upsilon(1S)$	9460.3 ± 0.26	9506.5	0.5	714.99 ± 2.40	718.8	0.5	
2	$\Upsilon(2S)$	10023.26 ± 0.32	9892.9	1.0	497.37 ± 2.23	575.7	16	
3	$\Upsilon(3S)$	10355.2 ± 0.5	10227.2	1.2	430.11 ± 1.94	413.0	4.0	
4	$\Upsilon(4S)$	10579.4 ± 1.2	10497.5	0.8	340.65 ± 9.08	324.3	4.8	
5	$\Upsilon(10860)$	$10889.9^{+3.2}_{-2.6}$	10721.5	1.5	-	-	-	
6	$\Upsilon(11020)$	$10992.9^{+10.0}_{-3.1}$	10912.7	0.7	-	-	-	
Γ	Nonlinear Regge Trajectory:				= 7.376(1.31 + n)	$i)^{0.24} \text{GeV}^2$ wi	th $R^2 = 0.999$	

Figure: Espectro das excitações radiais do Bottomonium

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

└─O modelo de Contreras, Diles e Vega

Função Espectral do Charmonium

75 MeV 150 MeV 270 MeV 370 MeV 15 415 MeV 500 MeV $\delta \omega^2$ 8 12 14 16 18 20 ω^2 (GeV²)

Figure: Função espectral do Charmonium em diferentes temperaturas, a curva tracejada corresponde a temperatura de derretimento.

・ロト・日本・日本・日本・日本・日本

Charmonium Melting Picture

└─O modelo de Contreras, Diles e Vega

Função Espectral do Bottomonium

70 MeV 150 MeV 30 270 MeV 370 MeV 25 467 5 MeV 500 MeV $\rho(\omega^2)$ $\delta \omega^2$ ٩n 95 100 105 110 120 ω^2 (GeV²)

Bottomonium Melting Picture

Figure: Função espectral do Bottomonium em diferentes temperaturas, a curva tracejada corresponde a temperatura de derretimento.

・ロト・日本・日本・日本・日本・日本

└─O modelo de Contreras, Diles e Vega

Potêncial holográfico do Charmonium

Figure: Potêncial holográfico (Liouville) do Charmonium. As retas horizontais tracejadas correspondem às massas quadráticas dos três primeiros estados excitados $(J/\Psi, \Psi', \Psi'')$

└─O modelo de Contreras, Diles e Vega

Subtração de Fundo: J/Ψ

Charmonium 410 MeV

Figure: Subtração de fundo da função espectral do estado fundamental (1S) do Charmonium.

└─O modelo de Contreras, Diles e Vega

Subtração de Fundo: Ψ'

Charmonium 2S 90 MeV

Figure: Subtração de fundo da função espectral do primeiro estado excitado (2S) do Charmonium.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

– O modelo de Contreras, Diles e Vega

Massa térmica do J/Ψ

Figure: Massa e amplitude de decaimento como função da temperatura 🗐 🤊 🤉

– O modelo de Contreras, Dil<u>es e Vega</u>

Massa térmica do Ψ'

Figure: Massa e amplitude de decaimento como função da temperatura para do primeiro estado excitado (2S) do Charmonium.

・ロト・西ト・田・・田・ ひゃぐ

└─ Comentários Finais

- 2 QCD Hologáfica e o espectro de mésons
- 3 O caminho para descrever mésons pesados

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 4 O modelo de Contreras, Diles e Vega
- 5 Comentários Finais

Comentários Finais

Conclusões

Para o Charmonium verificamos que de fato

 $T_{melting} \sim f_{1S},$

já para o Bottomonium esta temératura fica abaixo do valor numerico da constante de decaimento.

- Usando holografia podemos fazer uma análise minuciosa da espectroscopia de mésons pesados.
- A análise quantitativa da dissociação das partículas requer uma subtração apropriada dos efeitos de fundo na função espectral.
- O modelo a 4 parâmetros também pode ser aplicado em outros mésons como o φ ou até mesmo os leves como o ρ ou o ω. Porém, a falta de dados das cosntantes de deciamento desses mésons mascara as vantagens reais dos parâmetros

Comentários Finais

Referências

- H. R. Grigoryan, P. M. Hohler and M. A. Stephanov, Phys. Rev. D 82 (2010), 026005 [arXiv:1003.1138 [hep-ph]].
- N. R. F. Braga, M. A. Martin Contreras and S. Diles, Phys. Lett. B **763** (2016), 203-207 [arXiv:1507.04708 [hep-th]].
- N. R. F. Braga, M. A. Martin Contreras and S. Diles, Eur. Phys. J. C 76 (2016) no.11, 598 [arXiv:1604.08296 [hep-ph]].
- N. R. F. Braga, L. F. Ferreira and A. Vega, Phys. Lett. B 774 (2017), 476-481 [arXiv:1709.05326 [hep-ph]].
- M. A. Martin Contreras and A. Vega, Phys. Rev. D 102 (2020) no.4, 046007 [arXiv:2004.10286 [hep-ph]].
- M. A. Martin Contreras, S. Diles and A. Vega, Phys. Rev. D 103 (2021) no.8, 086008 [arXiv:2101.06212 [hep-ph]].

Comentários Finais

Muito Obrigado

<ロト <回ト < 注ト < 注ト