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Motivation for LV-Theories

It is believed that the nature of
space-time at the Planck scale
(Planck length ∼ 10−35) is not
necessarily continuous;
[Bernadotte, Klinkhamer (2007), hep-ph/0610216]

Violation of Lorentz Symmetry from
String Theory;
[Kostelecký, Samuel (1989), Phys. Rev. D 39,683]

Loop Quantum Gravity Theories can
also generate LV;
[R. Gambini and J. Pullin (1999) Phys. Rev. D 59,

124021 , gr-qc/9809038]

Discrete symmetry violation CPT
(CPT leads to LV.)
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Motivation for LV-Theories

The Lorentz symmetry break can be
incorporated in two ways:

Explicit breaking:

Contraction between Background
Fields and Field Operators;
Flat Space.

Spontaneous Break:

Dynamic Background Fields →
Symmetry Break.
Curved space.

Representation of the both types
Background fields.
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Nonminimal SME

SME

The SME foton sector〉 =
{

CPT-even〉 Kostelecký
CPT-odd〉 Carrol-Field-Jackiw

The Lagrange density is given by

L = −1

4
FµνF

µν +
1

2
εκλµνAλ

(
k̂AF

)
κ
Fµν −

1

2
Fκλ

(
k̂F

)κλµν
Fµν. (1)

where the operators k̂AF and k̂F have the form(
k̂AF

)
κ

= ∑
d ≥3, odd

(
k
(d)
AF

)α1 ...α(d−3)

κ
∂α1 . . . ∂...α(d−3)

, (2)

(
k̂F

)κλµν
= ∑

d ≥4, even

(
k
(d)
F

)κλµνα1 ...α(d−4)
∂α1 . . . ∂...α(d−4)

. (3)

d = 3, 4 the minimal version of the SME;

d ≥ 5 non-minimal version (non-renormalizable operators).

L. Lisboa-Santos (PPG - F́ısica - UFMA) LORENTZ-VIOLATING THEORIES November 2, 2022 5 / 58



Propagator technique: Maxwell-Chern-Simons-Proca

The Lagrangean of the Maxwell-Chern-Simons-Proca theory is shown
below

L = −1

4
FµνF

µν +
θ

2
εµνρAµ∂νAρ +

1

2
m2AµA

µ. (4)

From the density above, it’s possible to calculate the propagator;

To do that, we will use the method of “squaring” the Lagrangean
density. Next, we will show how this method works.
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Propagator technique: Maxwell-Chern-Simons-Proca

The first step is to rewrite the Lagrangean density in its bilinear form,
namely:

L = AµΘ̂µνAν. (5)

We begin by rewriting all the terms of the Lagrangeana as a function of
the gauge field Aα, namely:

L = −1

4

(
∂µAν − ∂νAµ

)
(∂µAν − ∂νAµ) +

θ

2
εµνρAµ∂νAρ +

1

2
m2AµA

µ,

L = −1

4

(
2∂µAν∂µAν − 2∂µAν∂νAµ

)
+ Aµ

(
θ

2
εµρν∂ρ +

1

2
m2gµν

)
Aν,

L = −1

2

(
∂µAν∂µAν − ∂µAν∂νAµ

)
+ Aµ

(
θ

2
εµρν∂ρ +

1

2
m2gµν

)
Aν, (6)
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Propagator technique: Maxwell-Chern-Simons-Proca

Using the identities bellow

∂µAν∂µAν = ∂µ (Aν∂µAν)− Aν∂µ∂µAν, (7)

∂µAν∂νAµ = ∂µ (Aν∂νAµ)− Aν∂µ∂νAµ, (8)

we get:

L =
1

2
Aµ

(
∂α∂αgµν − gµλg αν∂α∂λ + θεµρν∂ρ +m2gµν

)
Aν + ∂µS

µ︸ ︷︷ ︸
4−divergence

,

where we define Sµ ≡ − 1
2 (Aν∂µAν − Aν∂νAµ)
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Propagator technique: Maxwell-Chern-Simons-Proca

Then, we get the following form for the operator Θ̂µν, namely:

Θ̂µν ≡ ∂α∂αgµν − gµλg αν∂α∂λ + θεµρν∂ρ +m2gµν, (9)

or we can rewrite it as

Θ̂µν = ∂α∂αgµν − ∂µ∂ν + θεµρν∂ρ +m2gµν. (10)

In the momentum space the equation above becomes:

Θ̂µν = −pαp
αgµν + pµpν − iθεµρνpρ +m2gµν. (11)

Let us now define the following projectors:
θ̂

µν ≡ gµν −ωµν → Transverse projector

ω̂µν ≡ pµpν

p2 → Longitudinal projector

Ŝµν ≡ −iεµρνpρ → Chern-Simons projector

. (12)
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Propagator technique: Maxwell-Chern-Simons-Proca

The above projectors satisfy the following properties:

θ̂αν ω̂αν Ŝαν

θ̂
µα

θ̂
µ

ν 0 Ŝ
µ
ν

ω̂µα 0 ω̂
µ

ν 0

Ŝµα Ŝ
µ
ν 0 p2θ̂

µ

ν

Table: Multiplicative operator algebra fulfilled by θ̂
µν

, ω̂µν and Ŝµν. The products
are supposed to be in the ordering “column times row.”
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Propagator technique: Maxwell-Chern-Simons-Proca

We can rewrite the operator Θ̂µ in terms of the projectors defined in the
previous table, that is:

Θ̂µν =
(
−p2 +m2

)
gµν + pµpν − iθεµρνpρ,

Θ̂µν =
(
−p2 +m2

)
gµν +

(
p2 −m2

) pµpν

p2
+m2 p

µpν

p2
+ θŜµν,

Θ̂µν =
(
−p2 +m2

) (
gµν − pµpν

p2

)
+m2ω̂µν + θŜµν,

Θ̂µν =
(
−p2 +m2

)
θ̂

µν
+m2ω̂µν + θŜµν. (13)

We know that the propagator is given by:

Λ̂µν ≡
(

Θ̂µν
)−1

. (14)

Therefore, we need to invert the operator Θ̂µ in order to get the
propagator.
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Propagator technique: Maxwell-Chern-Simons-Proca

To accomplish our goal, we intend to use the identity given below to
derive the propagator, namely:

Λ̂µαΘ̂αν = δ
µ
ν . (15)

To proceed using the above identity, we will propose the following
structure for the ˆLambdaµα, namely:

Λ̂µα ≡ aθ̂ θ̂µα + bω̂ω̂µα + cŜ Ŝµα. (16)

We now need to find the value of the parameters
{
aθ̂, bω̂, cŜ

}
in order to

find the propagator and, to do this, we will use the identity (15) together
with the results shown in the previous table. Thus, we have:

Λ̂µαΘ̂αν = δν
µ,(

aθ̂ θ̂µα + bω̂ω̂µα + cŜ Ŝµα

) ((
−p2 +m2

)
θ̂

αν
+m2ω̂αν + θŜαν

)
= δν

µ.
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Propagator technique: Maxwell-Chern-Simons-Proca

By distributing the above terms, we get:

δν
µ = aθ̂

(
−p2 +m2

)
θ̂µα θ̂

αν
+ aθ̂m

2θ̂µαω̂αν + aθ̂θθ̂µαŜ
αν

+ bω̂

(
−p2 +m2

)
ω̂µα θ̂

αν
+ bω̂m

2ω̂µαω̂αν + bω̂θω̂µαŜ
αν

+ cŜ
(
−p2 +m2

)
Ŝµα θ̂

αν
+ cŜm

2Ŝµαω̂αν + cŜθŜµαŜ
αν,

and now applying the results for the projectors,

θ̂αν ω̂αν Ŝαν

θ̂
µα

θ̂
µ

ν 0 Ŝ
µ
ν

ω̂µα 0 ω̂
µ

ν 0

Ŝµα Ŝ
µ
ν 0 p2θ̂

µ

ν

we finally get

δ
µ
ν =

[
aθ̂

(
−p2 +m2

)
+ cŜθp2

]
θ̂

ν

µ

+ bω̂m
2ω̂ ν

µ +
[
aθ̂θ + cŜ

(
−p2 +m2

)]
Ŝ ν

µ . (17)
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Propagator technique: Maxwell-Chern-Simons-Proca

From the equation above, we can obtain a set of equations for the
parameters

{
aθ̂, bω̂, cŜ

}
taking into account both the linear independence

of the basis
{

θ̂
µν

, ω̂µν, Ŝµν
}

and the results shown in the projector’s

table as follows:

1o)→
{

aθ̂

(
−p2 +m2

)
+ cŜθp2 = 1

aθ̂θ + cŜ
(
−p2 +m2

)
= 0

, (18)

2o)→ bω̂m
2 = 1, (19)

3o)→
{

aθ̂

(
−p2 +m2

)
+ cŜθp2 = 1[

aθ̂θ + cŜ
(
−p2 +m2

)]
p2 = 0

. (20)

Solving the equations above, we have:

cŜ =
θ

− (p2 −m2)2 + θ2p2
, aθ̂ =

(
p2 −m2

)
− (p2 −m2)2 + θ2p2

, bω̂ =
1

m2
.
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Propagator technique: Maxwell-Chern-Simons-Proca

With the above results, the propagator takes the following form:

Λ̂µν =
1

− (p2 −m2)2 + θ2p2

[(
p2 −m2

)
gµν − iθεµρνpρ

−
(
p2 −m2 − θ2

) pµpν

m2

]
. (21)

Using the standard propagator notation, that is,

iDµν
F = 〈0|TAµ (x)Aν

(
x ′
)
|0〉 ,

we get:

iDµν
F =

i
(p2 + E+ + iε) (p2 + E− + iε)

[(
p2 −m2

)
gµν (22)

−
(
p2 −m2 − θ2

) pµpν

m2
− iθεµρνpρ

]
, (23)

where we made use of the following

definitions:E± ≡ 1
2 θ2 ± 1

2 θ
√

4m2 + θ2 +m2
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Propagator technique: Maxwell-Chern-Simons-Proca

We observe that when we perform the limit θ → 0 we recover the
propagator of the Maxwell-Proca theory, that is

iDµν
F = − i

(p2 −m2 + iε)

(
gµν − pµpν

m2

)
. (24)

The poles of the equation (22) gives us the dispersion relations, i.e.

−
(
p2 −m2

)2
+ θ2p2 = 0, (25)

whose solutions are

p2 =
1

2
θ2 ± 1

2
θ
√

4m2 + θ2 +m2,

or,
(
p0
(±)

)2
= p

2 +m2 +
1

2
θ2 ± 1

2
θ
√

4m2 + θ2. (26)
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Feynman propagator for Podolsky’s electrodynamics

Podolsky’s electrodynamics

The Podolsky’s model is represented by the following Lagrangian density

LPodolsky = −1

4
FµνF

µν +
θ2

2
∂αF

αβ∂λF
λ

β +
1

2ξ

(
∂µA

µ
)2

. (27)

In order to calculate the Feynman propagator, we can rewrite the
Lagrangian density in its bilinear form, that is:

L =
1

2
AνOµνA

µ, (28)

where Oµν is the following tensor operator

Oµν =
(
�+ θ2�2

)
Θµν −

1

ξ
�Ωµν. (29)

The above tensor operator satisfy the identity

Oµν∆ν
α = gµα. (30)
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Feynman propagator for Podolsky’s electrodynamics

Feynman propagator for Podolsky’s electrodynamics

In the above identity, the ∆ν
α is the inverse operator of Oµν. We must

remember that
gµν = Θµν + Ωµν, (31)

where the transverse and longitudinal projectors are, respectively, given by

Θµν = gµν −Ωµν, (32)

Ωµν = ∂µ∂ν/�. (33)

Now we are able to propose the following forma for the inverse operator
∆µν in terms os the known projectors, that is

∆ν
α = aΘν

α + bΩν
α. (34)

where a and b are unknown constants that must be determined.
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Feynman propagator for Podolsky’s electrodynamics

Feynman propagator for Podolsky’s electrodynamics

The transverse and longitudinal projectors satisfy the following closed
algebra:

Θν
α Ων

α

Θµν Θµα 0

Ωµν 0 Ωµα

Now, replacing the equation (34) in (30) and performing the tensor
contractions, we find the Feynman propagator:

〈AνAα〉 = −
i

p2

[
1(

1− θ2p2
)Θν

α − ξΩν
α

]
. (35)
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Stability and causality analyze

Stability and causality analyses

The propagator give us the following dispersion relations:

p2
0 = p2, (36)

p2
0 = p2 +M2

p , (37)

where the second dispersion relation represents a massive mode,
whose mass Mp = 1/θ is called Podolsky’s mass.

We have to analyze the dispersion relation (37), whose solutions are:

p0 = ±
√

p2 +M2
p . (38)

The positive energy p0 > 0 ensure stability.
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Stability and causality analyze

Stability and causality analyze

Group velocity and front velocity

ug =
∂p0

∂p
=

|p|√(
|p|2 +M2

p

) ≤ 1, (39)

ufront = lim
|p|→∞

p0

|p| =
√

1 +M2
p/ |p|2 = 1. (40)

For the causality, we have ug = |ug | ≤ 1 and ufrente ≤ 1, so causality is
preserved.
These results show us the the Podolsky’s electrodynamics is stable and
causal.
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Stability and causality analyze

Analyzing the LV causality

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

p

ugr

Figure: Group velocity

This dispersion relation does not describe a standard photon. It describes
a causal Podolsky excitation. It is called ”exotic” (different but not
unphysical).
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Unitarity analysis

Unitarity analysis

The saturated propagator is given by

SP = Jν Re s [i∆να] J
α, (41)

where the current satisfies the conservation law: ∂νJν = 0. Now, consider
the propagator

〈AνAα〉 = −
i

p2

[
1(

1− θ2p2
)Θν

α − ξΩν
α

]
. (42)

The saturation together with the currents is given by

SP = Re s

[
− i

p2

1(
1− θ2p2

)J2

]
. (43)
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Unitarity analysis

Unitarity analysis

For the first pole, p2 = 0, which is the same as in Maxwell theory, the
calculation of the residuo gives us the saturation:

SPp2=0 = i
(
J2 − J2

0

)
. (44)

In the pole p2 = 0
〉
p2

0 = p2 and from the current conservation law,
(p0J0 = p · J) ,we obtain

SP(p2=0) =
i

|p|2
|p× J|2 > 0. (45)

This implies that the excitations associated with this propagating mode
are unitary.
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Unitarity analysis

Unitarity analysis

For the second pole, p2 = 1/θ2, the calculations lead to

SP(p2=1/θ2) = −i
(
J2 − J2

0

)
. (46)

Using p0J0 = p · J and p2
0 = 1/θ2 + p2 the equation (46) may be rewrite

as:

SP = − i

p2 + 1/θ2

(
J2

θ2
+ |p× J|2 +

)
< 0. (47)

Thus, the saturated propagator is less than zero.
These states with negative norm (ghost states) are typical from higher
derivative theories.
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Unitarity analysis

A generalized model involving anisotropic Podolsky and
Lee-Wick terms

There are two other CPT-even dimension-six Lagrangian structures
endowed with two additional derivatives, beyond the LV term
∂σF

σβ∂λF
λαDβα, are they

Fµν∂α∂βF
µνDαβ , ∂σF

σλ∂µFνλD
µν . (48)

In case the tensor Dβα is diagonal, it becomes proportional to the usual
Lee-Wick term, that is,

Fµν∂α∂βF
µνDαβ = D00(Fµν�F µν) . (49)

In principle, the most general LV dimension-6 electrodynamics is

L = −1

4
FµνF

µν +
θ2

2
∂αF

αβ∂λF
λ
β + η2

1Dβα∂σF
σβ∂λF

λα

+η2
2D

βα∂σF
σλ∂βFαλ +

1

2ξ
(∂µA

µ)2 . (50)
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higher derivative CPT-even LV term

Paper published
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Classification under CPT

Classification under CPT

LLV = η2
1∂σF

σβ∂λF
λα Dβα, (51)

Under C− transformation: E → −E and B → −B.

Under P− transformation: E → −E and B → +B.

Under T− transformation: E → E and B → −B

Coefficient D00 :

η2∂σF
σ0∂λF

λ0 D00, (52)

sum of Einstein(
η2∂0F

00∂0F
00 + η2∂0F

00∂iF
i0 + η2∂iF

i 0∂0F
00 + η2∂iF

i 0∂jF
j0
)
D00,

as F 00 = 0,F i 0 = E i we have:

η2∂iE
i∂jE

jD00. (53)
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Classification under CPT

Classification under CPT

C− Transformation.

Cη2∂iE
i∂jE

j D00C
−1,

η2∂i
(
−E i

)
∂j
(
−E j

)
D00,

η2∂iE
i∂jE

j D00, (54)

it is invariant under transformation C .

P− Transformation.

Pη2∂iE
i∂jE

j D00P
−1.

η2 (−∂i )
(
−E i

)
(−∂j )

(
−E j

)
D00.

η2∂iE
i∂jE

j D00, (55)

it is invariant under transformation P.
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Classification under CPT

Classification under CPT

T− Transformation.

η2 (∂i )
(
E i
)
(∂j )

(
E j
)
D00,

η2∂iE
i∂jE

j D00, (56)

it is invariant under transformation T . we have the coefficient D00 is
invariant under the transformations CPT , so it is CPT−even.

For Di0 :

η2∂σF
σ i∂λF

λ0 Di0, (57)

sum of Einstein(
η2∂0F

0i∂0F
00 + η2∂0F

0i∂jF
j0 + η2∂jF

j i∂0F
00 + η2∂jF

j i∂kF
k0
)

Di0,

as F 00 = 0,F i 0 = E i ,F j i = εjilB
l we have:

−η2∂0E
i∂jE

j Di0 + η2εjil∂jB
l∂kE

k Di0. (58)
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Classification under CPT

Classification under CPT

C− Transformation.

−η2∂0

(
−E i

)
∂j
(
−E j

)
Di0 + η2εjil∂j

(
−B l

)
∂k

(
−E k

)
Di0,

−η2∂0E
i∂jE

j Di0 + η2εjil∂jB
l∂kE

k Di0, (59)

P− Transformation.

−η2
[
∂0

(
−E i

)
(−∂j )

(
−E j

)
− εjil (−∂j )

(
B l
)
(−∂k)

(
−E k

)]
Di0,

η2∂0E
i∂jE

j Di0 − η2εjil∂jB
l∂kE

kDi0, (60)

T− Transformation.

−η2 (−∂0)
(
E i
)
(∂j )

(
E j
)
Di0 + η2εjil (∂j )

(
−B l

)
(∂k)

(
E k
)

Di0,

η2∂0E
i∂jE

jDi0 − η2εjil∂jB
l∂kE

k Di0, (61)

We have the coefficient Di0 is invariant under the transformations
CPT , so it is CPT−even.
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Classification under CPT

Classification under CPT

Coefficient D0i :
η2∂σF

σ0∂λF
λiD0i ,

−η2∂jE
j∂0E

i D0i + η2∂jE
j εkil∂kB

l D0i . (62)

C− Transformation.

−η2∂jE
j∂0E

i D0i + η2∂jE
j εkil∂kB

l D0i , (63)

P− Transformation.

η2∂jE
j∂0E

i D0i − η2∂jE
j εkil∂k

(
B l
)

D0i , (64)

T− Transformation.

η2∂jE
j∂0E

iD0i − η2∂jE
j εkil∂kB

lD0i , (65)

We have the coefficient D0i under the transformations CPT is
CPT−even.
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Classification under CPT

Classification under CPT

Coefficient Dij :
η2∂σF

σ i∂λF
λj Dij ,

η2
(

∂0E
i∂0E

j − εkjn∂0E
i∂kB

n − εkin∂kB
n∂0E

j + εkinεljh∂kB
n∂lB

h
)
Dij ,

C− Transformation.

η2
(

∂0E
i∂0E

j − εkjn∂0E
i∂kB

n − εkin∂kB
n∂0E

j + εkinεljh∂kB
n∂lB

h
)
Dij ,

(66)
P− Transformation.

η2
(

∂0E
i∂0E

j − εkjn∂0E
i∂kB

n − εkin∂kB
n∂0E

j + εkinεljh∂kB
n∂lB

h
)
Dij ,

(67)
T− Transformation.

η2
(

∂0E
i∂0E

j − εkjn∂0E
i∂kB

n − εkin∂kB
n∂0E

j + εkinεljh∂kB
n∂lB

h
)
Dij .

(68)
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Classification under CPT

Classification under CPT

Results:

C P T CPT
D00 + + + +
Di0 + − − +
D0i + − − +
Dij + + + +

So, this model is CPT-even.
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A first particular case of the Anisotropic space sector

The behavior for the group velocity modulus

B and C parallel

0 5 10 15 20
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x

ugr

ϑ= π
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ϑ=0

ϑ= π
4

ϑ= 9 π
10

Figure: Group velocity for α > 0

This figure represents SPURIOUS dispersion relations, since there is
causality violation.
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A second particular case of the Anisotropic space sector

The behavior for the group velocity modulus

B and C antiparallel does not exhibit any singularity, is exotic, with
no causality violation. Podolsky-like DR.
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Figure: Group velocity for α < 0
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A third particular case of the Anisotropic space sector

The behavior for the group velocity modulus

This figure shows SPURIOUS and EXOTIC excitations, for different
parameter values.
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ϕ= 9 π
10
,ϑ= π
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Figure: group velocity for different angles of the positive mode

L. Lisboa-Santos (PPG - F́ısica - UFMA) LORENTZ-VIOLATING THEORIES November 2, 2022 37 / 58



A third particular case of the Anisotropic space sector

The behavior for the group velocity modulus
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Figure: group velocity for different angles of the negative mode

This figure shows SPURIOUS excitations, for different parameter values.
L. Lisboa-Santos (PPG - F́ısica - UFMA) LORENTZ-VIOLATING THEORIES November 2, 2022 38 / 58



Conclusions

Conclusions for parity-even anisotropic sector

The positive mode group velocity has a maximum and approaches
one and becomes greater than the first breaking causality for a certain
range of parameters.

For the same angular values, the negative mode group velocity
decreases from its initial singularity to a minimum and finally
approaches 1 from below.

For other values of the angles, it does not reveal any maximum or
minimum, with the group velocity from the negative mode
approaching 1 from above and the positive mode approaching 1 from
below. For this choice of parameters, the positive mode is exotic.

It has also been found that the negative mode does not propagate to
certain angles. For example, the group velocity disappears identically
for ϑ = π/2 and ϕ = π/4, and for ϑ = π/2 and ϕ
< [π + arcsin(1/x2)]/2, it leads to complex values.
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Nonminimal SME

Maxwell electrodynamics modified by a CPT-odd
dimension-5 higher-derivative term

Therefore, in the present work, we study Maxwell electrodynamics
modified by a CPT -odd, dimension-5 nonminimal SME term
represented by the Carroll-Field-Jackiw-like (CFJ-like) term of the
Lagrange density:

1

2
εκλµνAλ(k̂AF )κFµν . (69)

As a first investigation, we consider the special case for the LV
background

(k̂AF )κ = D̃κ� , (70a)

and the new Lagrange density has the form

L = −1

4
FµνF

µν +
1

2
εκλµνDκAλ�Fµν +

1

2ξ
(∂µA

µ)2 . (71)
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Feynman propagator for Maxwell electrodynamics modified

Feynman propagator for Maxwell electrodynamics modified

By performing suitable partial integrations and neglecting boundary terms,
the latter can be written as

L =
1

2
AµOµνA

ν , (72a)

with the differential operator

Oµν = �
(

Θµν − 2Lµν −
1

ξ
Ωµν

)
, (72b)

sandwiched in between two vector fields. Here we introduced the
symmetric transversal and longitudinal projectors, Θµν and Ωµν,
respectively:

Θµν ≡ ηµν −Ωµν , Ωµν ≡
∂µ∂ν

�
, (73)

while the Lorentz-violating part is described by the antisymmetric and
dimensionless operator,

Lµν ≡ εµνκλD
κ∂λ . (74)
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Feynman propagator for Maxwell electrodynamics modified

Feynman propagator for Maxwell electrodynamics modified

Now we intend to evaluate the propagator of the theory, i.e., we
should find the Green’s function ∆αβ, which is the inverse of the
differential operator Oµν, from the condition

Oµσ∆σ
ν = ηµν . (75)

We propose the following Ansatz :

∆σ
ν = aΘσ

ν + bLσ
ν + cΩσ

ν + dDσDν + e(Dσ∂ν +Dν∂σ) , (76)

where the parameters a . . . e are expected to be scalar operators.
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Feynman propagator for Maxwell electrodynamics modified

Feynman propagator for Maxwell electrodynamics
modified

The Feynman propagator is defined by the vacuum expectation value
of the time-ordered product of field operators evaluated at distinct
spacetime points,

i(DF )αβ(x − y) ≡ 〈0|T (Aα(x)Aβ(y))|0〉 . (77)

The form of the propagator in momentum:

∆µσ(p) =
−i

p2(1 + 4Υ(p))

{
ηµσ − 2iεµσκλD

κpλ −
[
1− 4(D · p)2

] pµpσ

p2

−ξ (1 + 4Υ(p))
pµpσ

p2
+ 4p2DµDσ − 4(D · p)

[
Dµpσ +Dσpµ

] }
, (78)

with
Υ(p) = D2p2 − (D · p)2 . (79)
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Dispersion relations

Dispersion relations

The poles of the propagator provide two dispersion equations for this
model,

p2 = 0 , (80a)

1 + 4
[
D2p2 − (D · p)2

]
= 0 , (80b)

as usual in theories with higher-dimensional operators.

The second equation contains information on the higher-derivative
dimension-5 term. It is reasonable to compare it to the dispersion
equation obtained for the dimension-4 MCFJ theory , given in terms
of the CFJ background vector (kAF )

µ:

p4 + p2k2
AF − (kAF · p)2 = 0 . (81)
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Dispersion relations

Analyze of some sectors of the theory

For a purely timelike background, Dγ = (D0, 0)γ, we have

p2 =
D2

0

4
, (82)

which does not correspond to a propagating mode. It is a nonphysical
DR, as it does not represent a relation between energy and
momentum.

This property is an important difference between the dimension-5
model under consideration and MCFJ theory. The latter exhibits a
DR associated with a timelike background vector.
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Dispersion relations

Spacelike dispersion relations

For a purely spacelike background, Dγ = (0,D)γ, the corresponding
DR is

p0 =
1

|D|

√
1

4
+ |D× p|2 , (83)

which can also be written as

p0 =
1

|D|

√
1

4
+D2p2 sin2 α , (84)

with the angle α enclosed by D and p:

D · p = |D||p| cos α . (85)

This is a DR that is compatible with the propagation of signals,
whose properties need to be examined.
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Dispersion relations

Causality analysis

The classical causality is characterized by the behavior of the group and
front velocity ugr and ufr, respectively, where

ugr ≡
∂p0

∂p
, ufr ≡ lim

|p|7→∞

p0

|p| . (86)

Classical causality is established as long as both ugr ≡ |ugr| ≤ 1 and
ufr ≤ 1. We now evaluate these characteristic velocities for DR (83). The
front velocity is

ufr = lim
|p|7→∞

√
1

4D2p2
+ sin2 α = sin α , (87)

as α ∈ [0, π].
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Dispersion relations

Causality analysis

Group velocity whose magnitude is

ugr =
sin α√

1/(4x2) + sin2 α
, (88)

where x ≡ |D||p| is a dimensionless parameter. Large momenta
correspond to large x . Hence,

lim
|p|7→∞

ugr = lim
x 7→∞

ugr = 1 , (89)

independently of the angle α.

As ugr ≤ 1 and ufr ≤ 1, classical causality is established.

If a DR does not approach the limit of standard electromagnetic
waves for zero Lorentz violation, it will be called “exotic.”

The latter are not necessarily unphysical, but they decouple in the
low-energy regime.
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Dispersion relations

The behavior of the magnitude of the group velocity

The graph shows a monotonically increasing group velocity that reaches
the asymptotic value 1, which is a behavior in accordance with causality.

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

x

ugr

Figure: Magnitude of the group velocity of Eq. (88) for the spacelike case with
α = 0 (black, plain), α = π/40 (red, dashed), α = π/10 (blue, dotted),
α = π/4 (green, dashed-dotted), and α = π/2 (orange, long dashes).
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Unitarity analysis

Unitarity analysis

The unitarity at tree-level, which is performed by means of the
saturated propagator SP .

SP ≡ Jµi∆µνJ
ν . (90)

The current Jµ is assumed to be real and satisfies the conservation
law ∂µJ

µ = 0, which in momentum space reads pµJ
µ = 0.

The saturation is

SP = −i
{

J2 + 4p2(J ·D)2

p2 [1 + 4(D2p2 − (D · p)2)]

}
, (91)

where
JµLµαJ

α = −iJµεµακλJ
αDκpλ = 0. (92)

Hence, the only Lorentz-violating contributions of the propagator that
have an impact on unitarity are the denominators and the symmetric
term, DµDν.
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Unitarity analysis

Unitarity for the spacelike configuration

For the configuration, Dµ = (0,D)µ, where

p2 =
1− 4(D · p)2

4D2
, (93)

we obtain the residue at this pole

Res(SP)|
p2= 1−4(D·p)2

4D2

=

= i

{
(1− 4(D · p)2)

[
4(D · J)2(D× p)2 − (D× J)2

]
− 4D4(J× p)2

D2 (1− 4(D · p)2) [1 + 4(D× p)2]

}
.

(94)

There are configurations for which the imaginary part of the latter is
positive.
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Unitarity analysis

Spacelike configuration

p parallel to J

We have

Res(SP)|
p2= 1−4(D·p)2

4D2 ,p‖J
= i
[
− J2

1 + 4(D× p)2
+

(D · J)2

D2

]
. (95)

The first term can be suppressed for large momenta as long as D ∦ p.

As the second contribution does not depend on the momentum, the
imaginary part of the residue can be positive for large enough
momenta.

Hence, there are configurations of background field, large momenta,
and external current for which unitarity is valid.
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Unitarity analysis

Spacelike configuration

θ is the angle between D and J

We have (D · J)2 = D2J2 cos2 θ and (D× p)2 = D2p2 sin2 θ. Thus, the
residue reads

Res(SP)|
p2= 1−4(D·p)2

4D2 ,p‖J
= iJ2 sin2 θ

(
4(D · p)2 − 1

4(D× p)2 + 1

)
, (96)

whose imaginary part is positive for

(D · p)2 >
1

4
. (97)

The latter condition assures unitarity.
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Maxwell electrodynamics modified by a CPT-odd dimension-5
higher derivative term: a second model

Maxwell electrodynamics modified by a CPT-odd
dimension-5 higher derivative term: a second model

As a second possibility, we propose the more sophisticated choice

(k̂AF )κ = (k
(5)
AF )

α1α2
κ ∂α1 ∂α2 = TκT

α1T α2 ∂α1 ∂α2 = Tκ(T · ∂)2 , (98)

where Tκ is a Lorentz-violating four-vector whose mass dimension is

[T 3
κ ] = −1. (99)

Modifying Maxwell’s theory by including this term into its Lagrange
density, leads to a higher-derivative (dimension-5) anisotropic MCFJ-like
theory described by

L = −1

4
FµνF

µν +
1

2
εκλµνAλTκ(T · ∂)2Fµν +

1

2ξ
(∂µA

µ)2 , (100)

it is directly linked to the photon sector of Myers-Pospelov theory .
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higher derivative CPT-odd LV term

Paper published
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Conclusions and final remarks

Conclusions

The analysis of the dispersion relations obtained from the propagator
poles revealed that signals do not propagate at all for the purely
timelike sector.

The modes of the purely spacelike sector decouple from the theory for
low energies and only propagate in the high-energy regime.

For this sector, classical causality is preserved for any choice of
background coefficients.

It was found that unitarity can be preserved in some special cases. In
general, however, the dispersion relations describe nonunitary modes.

This propagator possesses some analogy with that of MCFJ theory.
But the dispersion relations and the related physics are different
between these two models.

The second dimension-five term examined was an anisotropic
higher-derivative CFJ-like contribution that can be identified with the
photon sector of Myers-Pospelov theory.
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