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Introduction

Fourier’s law
Transport properties naturally emerge in macroscopic systems which
are not in thermal equilibrium.
The law for heat conduction in a given macroscopic system, where the
heat flux varies linearly with the temperature gradient, J ∝ −∇T .
For a simple one-dimensional system (e.g., a metallic bar along the x̂
axis, J = Jx̂), the heat flux J (rate of heat per unit area) is given by

J = −κ dT

dx
, (1)

where κ is the thermal conductivity.
In principle, κ may depend on temperature and pressure.



Introduction

Requirements for the validation of Fourier’s law
Summarizing, κ can not be:

dependent on temperature gradient;
dependent on lattice size.

κ can be or must be:
dependent on temperature and pressure (can be);
well-behaved function of its arguments (must be).



Main goals

We numerically investigate the thermal conductivity of n-vector mod-
els with n = 1, 2, 3 using molecular dynamics simulations;
For n = 1, our focus is on the d = 1 lattice of ferromagnetically
coupled planar rotators in the inertial XY model, considering both
local and coupling anisotropies. In the limit of extreme anisotropy,
these models approach the Ising model;
For the classical inertial nearest-neighbor XY ferromagnet (n = 2) we
study all feasible dimensions d = 1, 2, 3, with N = Ld representing
the total number of lattice sites;
For the classical inertial Heisenberg model (n = 3), we focus on the
one-dimensional lattice (chain).



n-vector models

Definition
Paradigmatic ferromagnets are in general described by a set of interacting
spins in a crystalline d-dimensional lattice that contains n spin vector
components such that |S| = 1 . In the absence of external fields and
inertial terms, the Hamiltonian of these systems can be expressed in the
following form:

H = −J
∑
〈ij〉

n∑
m=1

Sm
i Sm

j (J > 0;
n∑

m=1

(Sm
i )2 = 1) , (2)

where 〈ij〉 denotes first-neighboring spins, and n = 1, 2, 3,∞ correspond
respectively to the Ising, XY , Heisenberg and spherical models .



Classical inertial XY model

XY model
The Hamiltonian of the d-dimensional inertial ferromagnetic XY model is
given by

H =
1

2

Ld∑
`=1

p2` +
1

2

∑
〈`,`′〉

[1− cos(θ` − θ`′)] , (3)

where 〈`, `′〉 denotes nearest-neighboring rotors in the d-dimensional
lattice.

Momenta of inertia and unit first-neighbor coupling constant as unit,
without loss of generality;
Periodic boundary conditions along (d − 1) directions, and leaving
open for 1-dimensional ends. One of the ends being at a low temper-
ature heat bath Tl and the other one at high temperature Th.



Equations of motion: one-dimensional case

For the one-dimensional XY -model, we have:

θ̇i = pi (i = 1, . . . , L)
ṗ1 = −γhp1 + F1 +

√
2γhThηh(t)

ṗi = Fi (i = 2, . . . , L− 1)
ṗL = −γlpL + FL +

√
2γlTlηl(t) ,

(4)

the force components being given by

F1 = − sin(θ1 − θ2)− sin(θ1)

Fi = − sin(θi − θi+1)− sin(θi − θi−1)

FL = − sin(θL)− sin(θL − θL−1),

(5)

The friction coefficients are chosen γl = γh = 1 (for numerical convenience),
and ηl and ηh represents the Gaussian white noise with zero mean value
and unit variance (〈ηh/l(t)〉 = 0 and 〈ηh/l(t)ηh/l(t

′)〉 = δ(t − t ′)).



Equations of motion: two-dimensional case
For the two-dimensional XY -model, we have:

θ̇i ,j = pi ,j ((i , j) = 1, . . . , L)

ṗ1,j = −γhp1,j + F1,j +
√

2γhThηj ,h(t)

ṗi ,j = Fi ,j (i = 2, . . . , L− 1)
ṗL,j = −γlpL,j + FL,j +

√
2γlTlηj ,l(t) ,

(6)

the force components being given by

F1,j = − sin(θ1,j − θ2,j)− sin(θ1,j)

− sin(θ1,j − θ1,j+1)− sin(θ1,j − θ1,j−1)

Fi ,j = − sin(θi ,j − θi+1,j)− sin(θi ,j − θi−1,j)
− sin(θi ,j − θi ,j+1)− sin(θi ,j − θi ,j−1)

FL,j = − sin(θL,j)− sin(θL,j − θL−1,j)
− sin(θL,j − θL,j+1)− sin(θL,j − θL,j−1)

(7)

where θi ,1 = θi ,L+1 and θi ,0 = θi ,L.



Equations of motion: three-dimensional case

For d = 3, we have similarly :

θ̇i ,j ,k = pi ,j ,k ((i , j , k) = 1, . . . , L)

ṗ1,j ,k = −γhp1,j ,k + F1,j ,k +
√

2γhThηj ,k,h(t)

ṗi ,j ,k = Fi ,j ,k (i = 2, . . . , L− 1)

ṗL,j ,k = −γlpL,j ,k + FL,j ,k +
√

2γlTlηj ,k,l(t) ,

(8)

where θi ,1,k = θi ,L+1,k , θi ,0,k = θi ,L,k , θi ,j ,1 = θi ,j ,L+1 and θi ,j ,0 = θi ,j ,L.



Methods

From micro to macro: heat flux
The time derivative of the Hamiltonian Eq. 3 can be written as

dH
dt

= −1

2

Ld∑
`=1

(J` − J`′) (9)

where J` = (p`+p`′) sin(θ`−θ`′) is the Lagrangian flux, ` ∈ {1, · · · , Ld} is
a unique label for each site and `′ is the nearest-neighbor of site-` towards
to hot reservoir.
J` is defined as the energy transfer per unit time, per transverse (d − 1)-
dimensional “area” Ld−1.
The heat flux remains one-dimensional J = Jx̂ .
The macroscopic conductivity κ is given by

κ =
J

(Th − Tl)/L
=

J

2∆T/L
(10)



Methods

The dynamical evolution was conducted using the Velocity-Verlet al-
gorithm with step size dt = 0.01;
The transient time is carefully selected for different system sizes by
considering the development of the conductivity curve for varying tem-
perature values;
For instance, the number of transients thrown away for the system to
attain the stationary state is at least 2.6× 1011 for d = 1, 8.0× 1010

for d = 2 and 5.6× 1010 for d = 3;
The average of the heat flux is computed for 4 × 108 time steps and
80 randomly initialized realizations;
For simplicity, we set Th = T (1 + ∆) and Tl = T (1 − ∆) with
∆ = 0.125, where T is the average temperature .



XY lattices
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Figure: The lattice structure of the present A) d = 1 model (L sites) and B)
d = 2 model (L2 sites).
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Results

q-stretched exponential
All our results for d = 1, 2 and 3 collapse in the following universal form:

σ(T , L) Lδ(d) = A(d) e
−B(d)[T Lγ(d)]η(d)

q(d) , (11)

(A,B, q, η, γ, δ) are fitting parameters ;
Fourier’s law corresponds to the L→∞ limit ;
σ and κ decay with power laws, namely σ ∼ 1/Lρσ and κ ∼ 1/Lρκ ,
where ρσ ≡ δ + γ η

q−1 and ρκ ≡ ρσ − d ;
The validation of Fourier’s law is confirmed if ρκ = 0 or,
equivalently, ρσ = d , making the thermal conductivity independent
of the lattice size.

Does it hold true for both n = 1 (Ising) and n = 3 (Heisenberg)?



Anisotropic XY models: Approaching Ising model

XY→ Ising: local energy coupling
We assume that the Hamiltonian of the inertial XY model includes a local
energy being proportional to a self-interaction between spins in the x-
direction. This Hamiltonian can then be written as follows

H l
XY =

L∑
i=1

p2i
2

+
1

2

∑
〈i ,j〉

[
1− cos(θi − θj)

]
+ εl

L∑
i=1

sin2 θi , (12)

where εl ∈ [0,∞) is a coupling constant associated with this local energy.
The heat flux is derived via continuity equation; the Lagrangian heat flux
Ji is given by

Ji =
1

2
(pi + pi+1) sin(θi − θi+1) . (13)



Anisotropic XY models: Approaching Ising model

XY→ Ising: anisotropic coupling
Let us focus now on the second possibility, namely the anisotropically
coupled XY -model with L interacting spins Si . The corresponding Hamil-
tonian is given by

H a
XY =

L∑
i

p2i
2

+
1

2

∑
〈i ,j〉

[1 + εa − cos(θi − θj)− εa cos(θi + θj)] (14)

Notice that εa = ±1 correspond to the Ising model along the y and x axes
respectively, whereas εa = 0 recovers the standard isotropic XY -model.
The heat flux of the anisotropically coupled XY model is given by

Ji =
pi + pi+1

2
sin(θi − θi+1)

+ εa
pi − pi+1

2
sin(θi + θi+1) . (15)
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Figure: Schematic representation of the anisotropic XY coupling.
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Results

Indeed, the same approach previously used remains true for the Ising chain,
and the Fourier’s law is obeyed, with κIsing ∼ T−3.



Heisenberg chain

Heisenberg model
The one-dimensional classical inertial Heisenberg model, for a system of
L interacting rotators, is defined by the Hamiltonian,

H =
1

2

L∑
i=1

`2i +
1

2

∑
〈ij〉

(
1− Si · Sj

)
, (16)

where `i ≡ (`ix , `iy , `iz) and Si ≡ (Six ,Siy ,Siz) represent, respectively,
continuously varying angular momenta and spin variables at each site of
the linear chain.

Spins present unit norm, S2
i = 1;

Each site angular momentum `i must be perpendicular to Si ,
yielding `i · Si = 0.



Heisenberg chain

Equations of motion
All remaining rotators (i = 2, · · · , L − 1) follow their usual equations of
motion

Ṡi = `i × Si ,

˙̀
i = Si × (Si+1 + Si−1) ,

(17)

whereas the rotators at extremities follow standard Langevin dynamics,

˙̀
1 = −γh`1 + S1 × S2 + ηh ,

˙̀
L = −γl`L + SL × SL−1 + ηl .

(18)



Heisenberg chain

Equations of motion
The condition of a constant norm for the spin variables yields

dSi
dt

=
d (Si · Si )

1/2

dt
= 0 ⇒ Si · Ṡi = 0 , (19)

which should be used together with `i · Si = 0 in order to eliminate ῭
i

and calculate S̈i from Eqs. (17) and (18). One has for rotators at sites
i = 2, · · · , L− 1,

S̈i = (Si+1 + Si−1)−
[
Si · (Si+1 + Si−1) + Ṡ2

i

]
Si , (20)

whereas for those at extremities,

S̈1 = −Ṡ1 + S2 −
[
S1 · S2 + Ṡ2

1

]
S1 + S1 × ηh ,

S̈L = −ṠL + SL−1 −
[
SL · SL−1 + Ṡ2

L

]
SL + SL × ηl .

(21)



Heisenberg chain

Heat flux
The rotators at the bulk (i= 2, · · · , L− 1) follow a continuity equation,

dEi

dt
= −(Ji − Ji−1) , (22)

therefore, the heat flux of the Heisenberg chain is given by

Ji =
1

2

(
Si · Ṡi+1 − Si+1 · Ṡi

)
. (23)



Heisenberg chain
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Figure: (Color online)Numerical data for the thermal conductivity [panel (a)] and
thermal conductance [panel (b)] are represented versus temperature (log-log plots)
for different sizes (L = 50, 70, 100, 140) of the one-dimensional classical inertial
Heisenberg model.
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Figure: The plots for the thermal conductance of Fig. 5(b) are shown in a log-log
representation, for a conveniently chosen abscissa (x = L0.475T ), leading to a
collapse of data for all values of L considered.



Results

It also remains true for the Heisenberg chain, and the Fourier’s law is
obeyed, with κHeisenberg ∼ T−2.25.



Final remarks

The Fourier’s law is obeyed for n = 1, 2, 3 vector models;
The q-stretched exponential provides a good explanation of all tem-
perature regimes, mainly at high temperature regimes;
The relation γη/(q−1) = 1 is a necessary condition to this law holds;
It opens a question about the validation of this law in systems with
generic-range interactions, as α-XY model;
Since nonextensive statistical mechanics has been used in the de-
scription of a wide variety of complex systems, one expects that the
present results should be applicable to many of these systems in di-
verse non-equilibrium regimes.
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