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Group Representations Preliminary Definitions and Properties

Group Representations - Preliminary Definitions and
Properties

Definition

A group representation is a group homomorphism from an original group
G to a space of linear transformations L(V ) defined in a vector space V .

Γ : G −→ L(V )

Example

V = Cn , L(V ) = GL(n,C)

Example

Symmetric group in three letters

G = S3 = {( ), (1, 2), (2, 3), (1, 3), (1, 2, 3), (2, 3, 1)}
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Group Representations Preliminary Definitions and Properties

Example

Symmetric group in three letters

G = S3 = {( ), (1, 2), (2, 3), (1, 3), (1, 2, 3), (2, 3, 1)}
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Group Representations Classification of Representations

We may classify group representations according to

faithfulness → If the representation is an isomorphism, it is called
faithfull.
reducibility → If the representation can be reduced to block-diagonal
form, it is called reducible.

Definition

For a group representation R of a group G , we have:

i) When R is a one-dimensional representation, it is irreducible.

ii) In case the dimension of R is greater than one, if there exists a
similarity transformation RB in which all the matrices are written in
block-diagonal form, the representation R is called reducible,
otherwise R is irreducible.

Bloco-diagonal form:




x x x . . .
x x x . . .
x x x . . .
. . . x . .
. . . . x x
. . . . x x



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Group Representations Classification of Representations

Definition

Let G be a group and R : G −→ GL(n,C) a representation of G . Given
the matrix B ∈ GL(n,C), the application

RB : G −→ GL(n,C) ,
g �→ BR(g)B−1 ,

is called similarity transformation of R generated by B .

A similarity transformation for a group representation is, by its turn,
also a group representation of the same group G .

Definition

Two representations R1 and R2 of a group G are called similar ou
equivalent when there exists a matrix B such that R2 is a similarity
transformation of R1 generated by B .
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Group Representations Classification of Representations

A similarity transformation is always invertible. Indeed

RB(g) = BR(g)B
−1 ⇐⇒ B−1RB(g)B = R(g) .

Similarity transformatrions appear naturaly in base changes. Assume a and
b are two vectors related by b = Aa and perform a chnage of basis
a �→ a� = Ba e b �→ b� = Bb. Then

b = Aa→ Bb = BAa→ Bb = BAB−1Ba→ b� = A�a�

with
A� = BAB−1 .

That means, under the change of basis defined by B the matrix A
tranforms as A �→ A� = BAB−1.
An important property which remains invariant under similarity
transformations is the matricial trace

tr(BAB−1) = tr(B−1BA) = trA .
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Group Representations Classification of Representations

Example

Let G be the cyclic group C4 = {e, a, a2, a3} ∼= Z4, of order four, consider
now the application

e �−→
�
1 0
0 1

�
, a �−→

�
0 1
−1 0

�
,

a2 �−→
�
−1 0
0 −1

�
, a3 �−→

�
0 −1
1 0

�
.

This is an isomorphism between C4 and a multiplicative matricial group.
This is a faithful matricial representation of C4; the above matrices
reproduce the group multiplicative table.
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Group Representations Classification of Representations

In the example of the C4 representation, at first we cannot tell its
irreducibility, because the matrices associated to the elements a and a3 are
not diagonal.

e �−→
�
1 0
0 1

�
, a �−→

�
0 1
−1 0

�
,

a2 �−→
�
−1 0
0 −1

�
, a3 �−→

�
0 −1
1 0

�
.

However, a similarity transformation with

B =

�
1 −i
1 i

�

diagonalizes immediately all matrices

e −→
�
1 0
0 1

�
, a −→

�
i 0
0 −i

�
,

a2 −→
�
−1 0
0 −1

�
, a3 −→

�
−i 0
0 i

�
.

and we see the representa is reducible. Indeed, irreducible representations
of Abelian groups must be one dimensional.
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Group Representations Character Tables

Character Tables

Given a group G and a linear representation Γ, we know that the trace of
the group element associated matrices are invariant by similarity
transformations. We may go further and observe that this trace is the
same for all elements in a conjugation class. Therefore we may define the
character for group elements as well as for class congugation.

That is:
in practice the character is the matricial trace.
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Group Representations Character Tables

Character Tables

Definition

Given a representation k of a finite group G , we define its character
χk : G → C as the complex function

χk
α = trA

k
α .
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Group Representations Character Tables

Given a representation of a finite group G , the elements of a
conjugation class possess all the same character.

The character function of a finite group satisfies

χk(g−1
α ) = [χ

k(gα)]
∗

for all gα ∈ G .

Definition

Given a representation k of a group G , the character associated to a
conjugation class Cᾱ is the character of an element gα ∈ Cᾱ.
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Group Representations Character Tables

Example

The Quaternium Group (Group of Quaternium Units)

k 1 −1 {±i} {±j} {±k}
1 1 1 1 1 1
2 1 1 1 −1 −1
3 1 1 −1 1 −1
4 1 1 −1 −1 1
5 2 −2 0 0 0

1 �→
�

1 0
0 1

�
, i �→

�
0 −i

−i 0

�
, j �→

�
0 −1
1 0

�
, k �→

� −i 0
0 i

�
,

−1 �→
� −1 0

0 −1

�
, −i �→

�
0 i
i 0

�
, −j �→

�
0 1

−1 0

�
, −k �→

�
i 0
0 −i

�
.
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Group Representations Character Tables

Example

Symmetric Group in 4 Letters

k 1 6(12) 8(123) 6(1234) 3(12)(34)

1 1 1 1 1 1
2 1 −1 1 −1 1
3 2 0 −1 0 2
4 3 1 0 −1 −1
5 3 −1 0 1 −1
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Group Representations Character Tables

Example

The Alternating Group in four letters

k 1 3(12)(34) 4(123) 4(132)

1 1 1 1 1
2 1 1 ω ω2

3 1 1 ω2 ω
4 3 −1 0 0

with ω = e2πi/3
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Symmetries in Quantum Mechanics The Group of The Hamiltonian

The Group of the Hamiltonian

Two operators A and B are considered similar when related bya a
similarity transformation

B = RAR−1

for some R.

The Hamiltonian H is invariant under R if

H = RHR−1

which is equivalent to
[H,R] = 0

R. Thibes (UESB) Group Representations in QM and GT Encontro com Ciências 19 / 71



Symmetries in Quantum Mechanics The Group of The Hamiltonian

The Hamiltonian H is invariant under R if

H = RHR−1

which is equivalent to
[H,R] = 0

We call R a Hamiltonian symmetry. We gather all Hamiltonian
symmetries in the set G (H) which happens to be a group

G (H) = {R ∈ L(V);RH = HR}
We call G (H) the Hamiltonian Symmetry Group.
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Symmetries in Quantum Mechanics The Group of The Hamiltonian

G (H) is a group:

Indeed, if Rα are Rβ Hamiltonian symmetries, we have

(RαRβ)H = Rα(RβH)
= Rα(HRβ)
= (RαH)Rβ

= (HRα)Rβ = H(RαRβ) ,

and the product RαRβ is also a symmetry of the Hamiltonian.

The identity operator I is a symmetry of the Hamiltonian, as I commutes
with any operator.
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Symmetries in Quantum Mechanics Representations in the Hilbert Space

In summary, we have the following ingredients

A Hilbert Space −→ V
An Hermitian Operator −→ H ∈ L(V)
The Group of the Hamiltonian −→ G (H)
Symmetry Operators −→ R ∈ G (H)

Consider the eigenvalue equation for H in the Hilbert Space V

Hϕ = Eϕ , ϕ ∈ V

For a given eigenvalue E , we define the subspace

V (E ) = {ϕ ∈ V ; Hϕ = Eϕ}
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Symmetries in Quantum Mechanics Representations in the Hilbert Space

For a given ϕ ∈ V (E ), we define Eϕ as the subspace generated by all Rϕ
with R ∈ G (H).
We assume normal degeneracy, which means

Eϕ = V (E ) , ∀ϕ ∈ V (E )

Let l = dimV (E ). The eigenvalue E defines an l-dimensional
representation of G (H).
Explicitly, choose a basis {ϕ1, . . . , ϕl} for V (E and define the row vector

[Rϕ] = (Rϕ1 Rϕ2 . . . Rϕl)

as each Rϕi is a linear combination from ϕi , we have

[Rϕ] = [ϕ]Γ(R)

That is, we have a l-dimensional representation of the group G (H).
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Symmetries in Quantum Mechanics Representations in the Hilbert Space

Note that the relation
[Rϕ] = [ϕ]Γ(R)

may be rewritten in components as

Rϕi =
l�

j=1

ϕj(Γ(R))ji

As the transformation R must preserve the norm

||Rϕ|| = ||ϕ||

Γ(R) is a unitary representation of the group G (H).
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Symmetries in Quantum Mechanics Bloch’s Theorem

Bloch’s Theorem

Consider a onedimensional crystal with N repetition unities (sites)

�
− �2

2m

d2

dx2
+ V (x)

�
ϕ = Eϕ

Periodic Potential
V (x + a) = V (x)

ϕ(x + Na) = ϕ(x)

Hamiltonian Operator

H = − �2

2m

d2

dx2
+ V (x)

The vectors in the Hilbert Space are complex functions ψ : R→ C,
written simply as ψ(x) (the wave function)
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Symmetries in Quantum Mechanics Bloch’s Theorem

Define the translation operator

Raψ(x) = ψ(x + a)

Since d(x + a) = dx e V (x + a) = V (x), we have the symmetry

RaH = HRa
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Symmetries in Quantum Mechanics Bloch’s Theorem

Since Ra is a Hamiltonian symmetry, so is R
n
a .

Thus RN
a = E and we have the symmetry group

G = {Ra,R
2
a , . . . ,R

N−1
a ,RN

a }

as a subgroup of G (H). Since G is Abelian, the irreducible representations
are one dimensional. The characters must obey [χ(Ra)]

N = 1, thus

χ(1)(Ra) = 1

χ(2)(Ra) = e
2πi/N

χ(3)(Ra) = e
2.(2πi/N)

...

χN(Ra) = e
(N−1).(2πi/N)
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Symmetries in Quantum Mechanics Bloch’s Theorem

The character table maybe written as

{E} {Ra} {R2
a} · · · {RN−2

a } {RN−1
a }

Γ1 1 1 1 · · · 1 1
Γ2 1 ω ω2 · · · ωN−2 ωN−1

...
...

...
...

...
...

ΓN−1 1 ωN−2 ωN−4 · · · ω4 ω2

ΓN 1 ωN−1 ωN−2 · · · ω2 ω

With a simple calculation, we may prove one of the two results of Bloch’s
Theorem, namely the one with asserts that the solutions are periodic wave
functions enveloped by plane waves

ϕn(x) = e
iknxun(x) , com un(x) = un(x + a)
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Supersymmetric Quantum Mechanics Supersymmetry in Quantum Mechanics

Supersymmetry in Quantum Mechanics

Consider a spinless mass m particle on a line subjected to a one
dimensional real potential V (x). Its quantum mechanical description
amounts to constructing an infinite dimensional Hilbert space E of kets
|ψ > representing the possible particle states. The particle dynamical
evolution is governed by the Hamiltonian

H =
P2

2m
+ V (X) , (1)

where P and X are, correspondingly, the momentum and position
Hermitian operators acting on E . Since the potential is time independent,
the well-known separation of variables technique can be applied, leading,
in the position basis, to the time-independent Schrödinger equation

− �2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x) . (2)
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Supersymmetric Quantum Mechanics Supersymmetry in Quantum Mechanics

− �2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x) . (3)

This is an ordinary second order differential equation for the complex wave
function ψ(x) corresponding to the ket |ψ > ∈ E . We may also interpret
(3) as an eigenvalue-eigenvector problem. Given a potential V (x), we seek
for complex eigenfunctions ψ(x) and corresponding real eigenvalues E .
The real numbers E , being eigenvalues of the Hamiltonian, represent the
energy spectrum of the theory.
Let ψ0(x) be the ground state solution of (3), corresponding to the
minimal energy E0. Redefining the potential as V−(x) ≡ V (x)− E0 we
may write

− �2

2m

d2

dx2
ψ0(x) + V−(x)ψ0(x) = 0 (4)

for the ground state and all energy levels get downshifted by E0.
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Supersymmetric Quantum Mechanics Supersymmetry in Quantum Mechanics

Associated to the potential V− we can define the corresponding
Hamiltonian H− given by

H− ≡ −�
2

2m

d2

dx2
+ V− . (5)

Labeling eigenfunctions and eigenvalues by the subscript n we have
explicitly

H−ψ−
n (x) = −

�2

2m

d2

dx2
ψ−
n (x) + V−(x)ψ−

n (x) = E
−
n ψ−

n (x) , (6)

with E−
n ≡ En − E0. As defined above the ground state of H− can be

readily checked to have zero energy

H−ψ−
0 = 0 . (7)

Naturally the eigenstates of (3) are the same as those of (6) and
particularly ψ0 = ψ−

0 .
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Supersymmetric Quantum Mechanics Supersymmetry in Quantum Mechanics

Aiming to obtain a supersymmetric partner for the potential V−, we shall
now introduce the elements of supersymmetry in the theory. Inspired by
the well-known creation/anihilation operator technique of the harmonic
oscillator we begin factorizing the second order operator H− into

H− = A+A− , (8)

with,

A− ≡ �√
2m

d

dx
+W (x) ,

A+ ≡ −�√
2m

d

dx
+W (x) , (9)

where W (x) is a solution of the Riccati non-linear first order differential
equation

V− =W 2(x)− �√
2m

W �(x) . (10)
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Supersymmetric Quantum Mechanics Supersymmetry in Quantum Mechanics

The quantity W (x) is called the superpotential associated to the original
potential V (x) in (3) and satisfies the commutation relation

�
A−,A+

�
=

2�√
2m

W �(x) . (11)

Notice that if a ground state eigenfunction ψ0 satisfying (4) for a particular
one-dimensional potential V (x) is known, one can immediately write

W (x) = − �√
2m

ψ�
0(x)

ψ0(x)
(12)

Switching the order between A− and A+ in (9) we define the operator

H+ ≡ A−A+ = − �2

2m

d2

dx2
+ V+ , (13)

V+ ≡
�√
2m

W � +W 2 . (14)
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Supersymmetric Quantum Mechanics Supersymmetry in Quantum Mechanics

Here H+ and V+ are known respectively as the SUSY partners of H
− and

V−. As can be easily checked, A+ and A− are the adjoint of each other,
while both Hamiltonians H+ and H− are Hermitian semi-positive-definite
operators. In the following, let us figure out how the eigenvalues and
eigenfunctions of H− and H+ are interrelated. Denoting the
eigenfunctions of H−(H+) by ψ−

n (ψ
+
n ) we write

H−ψ−
n (x) = E−

n ψ−
n (x) ,

H+ψ+
n (x) = E+

n ψ+
n (x) .

(15)

Concerning solutions φ± to A+φ+ = A−φ− = 0, we may write

φ± ∼ exp
�
∓
√
2m

�

�
W (x)dx

�
, (16)

and particularly φ+ ∼ (φ−)−1. That means if φ− is normalizable, φ+ is
not. We assume φ− to be normalizable and consider φ− = ψ−

0 which
satisfies

H−ψ−
0 = A

+(A−ψ−
0 ) = 0 . (17)
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Supersymmetric Quantum Mechanics Supersymmetry in Quantum Mechanics

Explicitly we write

ψ−
0 (x) = C exp

�
−
√
2m

�

�
W (x)dx

�
, (18)

with �
dx |ψ−

0 |2 = 1 . (19)

Therefore, considering the eigenvalues in (15) ordered by increasing value
of energies, we must have E−

0 = 0 and E
+
0 > 0. Observing that

H+(A−ψ−
n ) = E

−
n (A

−ψ−
n ) , (20)

and comparing with the second equation of (15) we see that (i) the
spectrum of H+ coincides with that of H− with the sole exception of
E−
0 = 0 and (ii) the eigenfunctions of H

+ are proportional to A−ψ−
n .
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Supersymmetric Quantum Mechanics Supersymmetry in Quantum Mechanics

We thus write
E+
n = E

−
n+1 , n ≥ 0 , (21)

and

ψ+
n =

1�
E−
n+1

A−ψ−
n+1 , n ≥ 0 . (22)

By applying A+ to both sides of the last equation it can be inverted to

ψ−
n+1 =

1�
E+
n

A+ψ+
n , n ≥ 0 . (23)

We see that the A− and A+ operators connect H− and H+ eigenstates
with the same energy. Knowledge of the eigenstates and eigenvalues of
one of the Hamiltionians H± leads to the knowledge of the corresponding
solution for its partner. In the following sections we apply this formalism
to specific one dimensional potentials.
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Supersymmetric Quantum Mechanics Example: Infinite Square Well Potential

Infinite Square Well Potential

In this section we illustrate the previously discussed central SUSYQM ideas
in the simple infinite square well potential, also known as “particle in a box
potential”. We start with the time-independent Schrödinger equation (3)
with the potential V (x) given by

V (x) =

�
0 , |x | ≤ a ;
∞ , |x | > a .

(24)

The positive real parameter a, with length dimension, characterizes the
well potential width. The wave function vanishes for |x | ≥ a confining thus
the particle inside the “box” |x | < a. For |x | < a, equation (3) reduces to

d2ψ

dx2
= −2mE

�2
ψ(x) . (25)
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Supersymmetric Quantum Mechanics Example: Infinite Square Well Potential

Non-positive energy eigenvalues lead to wave solutions which cannot
match continuity at |x | = a, unless ψ ≡ 0 which is not an allowed
eigenvector by definition. Therefore we must have E > 0. Defining

k =
�

2mE
�2 we write the general solution for (25) as

ψ(x) = A cos kx + B sin kx . (26)

The boundary condition ψ(a) = ψ(−a) = 0 enforces either B = 0 with
ka = (2n + 1)π/2 or A = 0 with ka = nπ for natural n.
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Supersymmetric Quantum Mechanics Example: Infinite Square Well Potential

Therefore, labelling the solutions by n ∈ N in increasing order of energy
value, we have

En =
π2�2

8ma2
n2 , n = 1, 2, 3, . . . ,

ψn =

�
Bn cos

�
nπx
2a

�
, for n = 1, 3, 5, . . . ,

Bn sin
�
nπx
2a

�
, for n = 2, 4, 6, . . . ,

(27)

By subtracting the ground state energy and shifting n to n + 1 we get

E−
n =

π2�2

8ma2
n(n + 2) , n = 0, 1, 2, . . . ,

ψ−
n =




Cn cos

�
(n+1)πx

2a

�
, for n = 0, 2, 4, . . . ,

Cn sin
�
(n+1)πx

2a

�
, for n = 1, 3, 5, . . .

(28)

according to the previous SUSY notation.
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Supersymmetric Quantum Mechanics Example: Infinite Square Well Potential

The superpotential can be readily obtained from (12) as

W (x) =
�π√
8ma2

tan
�πx
2a

�
, (29)

and the SUSY partner potential (14) reads

V+(x) =
�2π
8ma2

�
2 sec2

�πx
2a

�
− 1

�
. (30)

The potential V+(x) in (30) can be promptly recognized as the
Pöschl-Teller potential.
Now we may use our knowledge of the solution to the infinite square well
potential (28) and its corresponding superpotential (29) to generate the set
of solutions (23) to the Pöschl-Teller potential (30). For instance, for the
first three eigenfunctions of H+, an explicit calculation using (23) leads to

ψ+
0 = cos2

�πx
2a

�

ψ+
1 = sin

�πx
a

�
cos

�πx
2a

�

ψ+
2 = 4 cos4

�πx
2a

�
− 5 sin2

�πx
a

�
(31)
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Supersymmetric Quantum Mechanics Example: Infinite Square Well Potential

Further, the corresponding eigenvalues, obtained from (21), are easily

found to be E+
0 =

3π2�2
8ma2

, E+
1 =

8
3E

+
0 and E

+
2 = 5E

+
0 .

Thus we see in this example that knowledge of the solution of the simpler
eigenvalue problem for H− enables one to readily solve the more involving
Pöschl-Teller potential problem.
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Supersymmetric Quantum Mechanics Supersymmetry Operators

Supersymetric Operators

The partner Hamiltonians are given by

H− = A+A−

H+ = A
−A+

Note that the expectation values for these operators are always
non-negative

< φ|H∓|φ > = < φ|A±A∓|φ >
= (< φ|A±) (A∓|φ >) = ||A∓|φ > ||2 ≥ 0

Now introduce two new operators Q± given by

Q− ≡
�
0 0
A− 0

�
and Q+ ≡

�
0 A+

0 0

�
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Supersymmetric Quantum Mechanics Supersymmetry Operators

Q− ≡
�
0 0
A− 0

�
and Q+ ≡

�
0 A+

0 0

�

which upon multiplication result in

Q−Q+ ≡
�
0 0
0 A−A+

�
Q+Q− ≡

�
A+A− 0
0 0

�

that is

Q−Q+ + Q+Q− =
�
A+A− 0
0 A−A+

�
=

�
H− 0
0 H+

�
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Supersymmetric Quantum Mechanics Supersymmetry Operators

Define a Hamiltonian in matrix form as

H ≡
�
H− 0
0 H+

�
=

�
A+A− 0
0 A−A+

�

We promptly note that

H = Q−Q+ + Q+Q− = {Q−,Q+}

Furthermore
(Q±)2 = 0

and �
Q±,H

�
≡ Q±H − HQ± = 0

The property [Q±,H] = 0 signals an underlying symmetry.
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By defining the dublets

�
ψ−
n (x)
0

� �
0

ψ+
n (x)

�

we see that Q± act like ladder operators

Q−
�

ψ−
n (x)
0

�
≡

�
0 0
A− 0

��
ψ−
n (x)
0

�

=

�
0

A−ψ−
n (x)

�
=

�
0

ψ+
n−1(x)

�

Q+

�
0

ψ+
n (x)

�
≡

�
0 A+

0 0

��
0

ψ+
n (x)

�

=

�
A+ψ+

n (x)
0

�
=

�
ψ−
n+1(x)
0

�
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Global Symmetries

Internal rigid symmetry groups are compact Lie groups space-time
independents used in field or particles classification

For g ∈ G and Φ a multiplet, we have

Φ(x)→ U(g)Φ(x)

explicitly in indices
Φa(x)→ Uab(g)Φb(x)

with
(Φa,Φb) = δab

We say we have a Lagrangian symmetry when

L(U(g)Φ) = L(Φ)
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To say that the transformation is rigid or global is to say that it does not
depend on the space-time coordinates, i.e.,

∂µU(g)Φ(x) = U(g)∂µΦ(x)

Naturally, regarding the space-time, we assume the holding of
Poincarè symmetry

(U(a,Λ)Φ)(x) = D(Λ)Φ(Λ−1(x − a))

Example

L = ψ̄ /∂ψ + 1
2(∂µφ)

2 + V (φ)

+
�
mαβψ̄αψβ + g

a
αβψ̄αψβφa + f

k
αβψ̄αγ5ψβψβφk + h.c .

�
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Gauge Groups in Field Theory Global Symmetries

Even when the transformation

Φa(x)→ Uab(g)Φb(x)

is not an exact Lagrangian symmetry, we may use it for classification
purposes for instance as in the famous case of SU(3)-flavor (the eightfold
way).
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When the transformation

Φa(x)→ Uab(g)Φb(x)

is a genuine symmetry, Noether’s Theorem leads to the current conservatio

Indeed, define Ik by

�
∂

∂ak
(U(g)Φ(x))α

�

a=0

= (IkΦ(x))
α = (Iαβk )Φ

β(x)

and define the current

jkµ = πµIkΦ = πα
µ I

αβΦβ

where

πµ =
∂L(x)

∂Φµ(x)
, Φµ ≡ ∂µΦ
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Therefore
∂µj

k
µ = (∂µπµ)IkΦ+ πµIk(∂µΦ)

= ∂L
∂Φ IkΦ+

∂L
∂Φµ

IkΦµ =
�

∂L
∂ak

�
a=0

thus
∂L

∂ak
= 0⇒ ∂µj

k
µ = 0

and for each generator of the continuos group of symmetries we have a
conserved current with corresponding charge

Qk =

�
d3xjk0 (x)

satisfying
∂

∂t
Qk = 0
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Local Symmetries

The gauge principle for electromagnetism

LEM = L(Φ,DµΦ)−
1

4
FµνF

µν

Fµν = ∂µAν − ∂νAµ

Fi0 = Ei , Fij =
1

2
�ijkBk

The covariant devivative in this case reads

DµΦ = ∂µΦ+ iAµQΦ

with QΦa = eaΦa.
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Gauge Groups in Field Theory Local Symmetries

We have invariance with respect to gauge transformations

Φ→ e iθ(x)QΦ , Aµ → Aµ − ∂µθ(x)

Note that the potential Aµ is introduced in the covariant derivative
precisely to get the covariance of the derivatives in the matter terms in
such a way that

Dµ(A
θ)e iθ(x)QΦ(x) = e iθ(x)QDµ(A)Φ(x)

The idea now it to mimic this process to other Lie groups.
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We begin with a matter Lagrangian, invariant with respect to a Lie group
G .

L(Φ(x), ∂µΦ(x)) = L(U(g)Φ(x),U(g)∂µΦ(x))

Introducing the vector potentials Ak
µ, one corresponding to each generator

σk of G , we define the covariant derivative

DµΦ = ∂µΦ+ e (Aµ · σ) Φ

or
(DµΦ)

a = ∂µΦ
a + eAk

µσ
ab
k Φ

b

such that
U(g(x))DµΦ(x) = DµU(g(x))Φ(x)

or equivalently

Dµ(A
g ) = U(g(x))Dµ(A)U

−1(g(x))
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Developing the previous relation, we obtain the gauge field transformation

Ag
µ = UAµU

−1 + U∂µU
−1

which generalizes the old ones

Aµ→ UAµU
−1 e Aµ→ Aµ + ∂µθ

In thiw way, we obtain

L(Φ(x),DµΦ(x)) = L(U(g(x))Φ(x),U(g(x))DµΦ(x))
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Similarly to the electromagnetic case, we construct now a kinetic term to
the gauge fields and define

Fµν = ∂µAν − ∂νAµ + e[Aµ,Aν ]

from which we see
Fµν(A

g ) = UFµν(A)U
−1

That is, contrary to the Abelian case, the tensor Fµν is not gauge
invariant. But it is covariant, so that the Lagrangia

L(Φ,A) = −1
4
trFµνF

µν + L(Φ,DµΦ)

is invariant.
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Yang-Mills Theories and Confinement Maximal Abelian Gauge

In order to discuss the gauge fixing condition let us first remind some basic
properties of the maximal Abelian gauge in the case of SU(2). The gauge
field is decomposed into off-diagonal and diagonal components, according
to

Aµ = A
a
µT

a + AµT
3 , (32)

where T a, a = 1, 2, denote the off-diagonal generators of SU(2), while T 3

stands for the diagonal generator,

�
T a,T b

�
= i εabT 3,

�
T 3,T a

�
= i εabT b, (33)

where

εab = εab3 ,

εacεad = δcd . (34)
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Similarly, for the field strength one has

Fµν = F
a
µνT

a + FµνT
3 , (35)

with the off-diagonal and diagonal parts given, respectively, by

F a
µν = Dab

µ A
b
ν − Dab

ν A
b
µ , (36)

Fµν = ∂µAν − ∂νAµ + gε
abAa

µA
b
ν ,

where the covariant derivative Dab
µ is defined with respect to the diagonal

component Aµ

Dab
µ ≡ ∂µδ

ab − gεabAµ . (37)

Thus, for the Yang-Mills action in Euclidean space one obtains

SYM =
1

4

�
d4x

�
F a
µνF

a
µν + FµνFµν

�
. (38)
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As it is easily checked, the classical action (38) is left invariant by the
gauge transformations

δAa
µ = −Dab

µ ωb − gεabAb
µω ,

δAµ = −∂µω − gεabAa
µω

b . (39)

The maximal Abelian gauge is obtained by demanding that the
off-diagonal components Aa

µ of the gauge field obey the nonlinear condition

Dab
µ A

b
µ = 0 , (40)

which follows by requiring that the auxiliary functional

R[A] =
�
d4xAa

µA
a
µ , (41)

is stationary with respect to the gauge transformations (39).
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Moreover, as it is apparent from the presence of the covariant derivative
Dab
µ , equation (40) allows for a residual local U(1) invariance
corresponding to the diagonal subgroup of SU(2). This additional
invariance has to be fixed by means of a suitable gauge condition on the
diagonal component Aµ, which will be chosen to be of the Landau type,
also adopted in lattice simulations, namely

∂µAµ = 0 . (42)

Let us work out the condition for the existence of Gribov copies in the
maximal Abelian gauge. In the case of small gauge transformations, this is
easily obtained by requiring that the transformed fields, eqs.(39), fulfill the
same gauge conditions obeyed by

�
Aµ,A

a
µ

�
, i.e. eqs.(40), (42).
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Yang-Mills Theories and Confinement Maximal Abelian Gauge

Thus, to the first order in the gauge parameters (ω, ωa), one gets

−Dab
µ D

bc
µ ωc − gεbcDab

µ

�
Ac
µω

�
(43)

+gεabAb
µ∂µω + g

2εabεcdAb
µA

c
µω

d = 0 , (44)

−∂2ω − gεab∂µ
�
Aa
µω

b
�
= 0 , (45)

which, due to eqs.(40),(42) read

Mabωb = 0 , (46)

−∂2ω − gεab∂µ
�
Aa
µω

b
�
= 0 , (47)

withMab given by

Mab = −Dac
µ D

cb
µ − g2εacεbdAc

µA
d
µ . (48)

The operatorMab is recognized to be the Faddeev-Popov operator for the
off-diagonal ghost sector.
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It enjoys the property of being Hermitian and, is the difference of two
positive semidefinite operators given, respectively, by −Dac

µ D
cb
µ and

g2εacεbdAc
µA

d
µ. Also, one should remark that the diagonal parameter ω

appears only in the eq.(47), in a form which allows us to express it in terms
of the solution of the first equation (46). More precisely, once eq.(46) has
been solved for Aµ, A

a
µ, ω

b, for the diagonal parameter ω one can write

ω = −g�ab ∂µ
∂2

�
Aa
µω

b
�

. (49)

This feature means essentially that the diagonal parameter ω has no
special role in the characterization of the Gribov copies, whose properties
are encoded in eq.(46).
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Also, from eq.(49) it follows that the new variable ω̃

ω̃ = ω + g�ab
∂µ
∂2

�
Aa
µω

b
�

, (50)

obeys
∂2ω̃ = 0 . (51)

The change of variable (50) can be performed in the partition function
expressing the Faddeev-Popov quantization of Yang-Mills theories in the
maximal Abelian gauge. As the corresponding Jacobian turns out to be
independent from the fields, transformation has the effect of decoupling
the diagonal ghost fields from the theory. As a consequence, the
corresponding two point function is not affected by the restriction to the
Gribov region.
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Let us face now the implementation in the Feynman path integral of the
restriction of the domain of integration to the Gribov region C0, defined as
the set of fields fulfilling the gauge conditions (40), (42) and for which the
Faddeev-Popov operatorMab is positive definite, namely

C0 =
�
Aµ, A

a
µ, ∂µAµ = 0, D

ab
µ A

b
µ = 0,

Mab = −Dac
µ D

cb
µ − g2εacεbdAc

µA
d
µ > 0

�
.

(52)

The boundary, l1, of the region C0, where the first vanishing eigenvalue of
Mab appears, is called the first Gribov horizon. The restriction of the
domain of integration to this region is supported by the possibility of
generalizing to the maximal Abelian gauge Gribov’s original result stating
that for any field located near a horizon there is a gauge copy, close to the
same horizon, located on the other side of the horizon. We have found
useful to devote the whole Appendix 9 to the details of the proof of this
statement.
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Thus, for the partition function of Yang-Mills theory in the maximal
Abelian gauge, we write

Z =
�
DAa

µDAµ det
�
Mab(A)

�
δ
�
Dab
µ A

b
µ

�
δ (∂µAµ) e

−SYMV(C0) ,
(53)

where the factor V(C0) implements the restriction to the region C0. The
factor V(C0) can be accommodated for by means of a no pole condition on
the off-diagonal ghost two-point function, given by the inverse of the
Faddeev-Popov operatorMab.
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We are now ready to discuss the behavior of the gluon propagator when
the domain of integration in the Feynman path integral is restricted to the
region C0, eq.(53). The factor V(C0) implementing the restriction to C0 is
given by

V(C0) = θ [1− σ(0,A)] , (54)

where θ(x) stands for the step function. Moreover, making use of the
integral representation

θ(1− σ(0,A)) =

� i∞+ε

−i∞+ε

dζ

2πiζ
eζ(1−σ(0,A)) , (55)

for the partition function Z we get

Z =
�
DAa

µDAµ
dζ
2πiζ det

�
Mab(A)

�

exp
�
ζ − SYM − 1

2α

�
Dab
µ A

b
µ

�2 − 1
2β (∂µAµ)

2 − ζσ(0,A)
� (56)

where the gauge parameters α and β have to be set to zero at end, i.e. α,
β → 0, to recover the gauge conditions (40), (42).
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In order to study the gluon propagator, it is sufficient to retain only the
quadratic terms in expression (56) which contribute to the two-point
correlation functions

�
Aa
µ(k)A

b
ν(−k)

�
and �Aµ(k)Aν(−k)�. Thus

Zquadr = N
�
DAa

µDAµ
dζ

2πi
e(ζ−log ζ−Squadr−ζσ(0,A)) , (57)

where N is a constant factor and Squadr stands for the quadratic part of
the quantized Yang-Mills action, namely

Squadr =
1

2

�

q

�
Aa
µ(q)

�
q2δµν −

�
1− 1

α

�
qµqν

�
Aa
ν(−q)

�

+
1

2

�

q

�
Aµ(q)

�
q2δµν −

�
1− 1

β

�
qµqν

�
Aν(−q)

�
.(58)
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Taking the thermodynamic limit, V →∞, and introducing the Gribov
parameter γ

γ4 =
ζ0g

2

2V
, V →∞ , (59)

we get the gap equation

3

4
g2

�
d4q

(2π)4
1

q4 + γ4
= 1 , (60)

where the term 1/ζ0 has been neglected in the thermodynamic limit. To
obtain the gauge propagator, we can now go back to the expression for
Zquadr which, after substituting the saddle point value ζ = ζ0, becomes

Zquadr = N
�
DAa

µDAµe
− 1

2(
�

q Aµ(q)Qµν(γ,q)Aν(−q)+
�

q A
a
µ(q)Pµν(q)Aa

µ(−q)) ,

(61)
with

Qµν(γ, q) =

�
q2 +

γ4

q2

�
δµν −

�
1− 1

β

�
qµqν . (62)
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Evaluating the inverse of Qµν(γ, q) and of Pµν(q), and setting the gauge
parameters α,β to zero, we get the gluon propagator for the diagonal and
off diagonal components of the gauge field, namely

�Aµ(q)Aν(−q)� =
q2

q4 + γ4

�
δµν −

qµqν
q2

�
, (63)

and �
Aa
µ(q)A

b
ν(−q)

�
= δab

1

q2

�
δµν −

qµqν
q2

�
, (64)

One sees that the diagonal component, eq.(63), is suppressed in the
infrared, exhibiting the characteristic Gribov type behavior. The
off-diagonal components, eq.(64), remains unchanged.
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