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Group Representations Preliminary Definitions and Properties

Group Representations - Preliminary Definitions and
Properties

Definition
A group representation is a group homomorphism from an original group
G to a space of linear transformations L(V') defined in a vector space V.

MG — L(V)

Example
V=C", L(V)=GL(nC)

Example

Symmetric group in three letters

G =5 =1{(),(1,2)(23),(1,3),(1,2,3),(2,3,1)}
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Preliminary Definitions and Properties
Example

Symmetric group in three letters

G =53={():(1,2),(23),(1,3),(1,2,3),(2,3,1)}
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Classification of Representations Classification of Representations
We may classify group representations according to
o faithfulness — If the representation is an isomorphism, it is called

Definition
Let G be a group and R: G — GL(n, C) a representation of G. Given

faithfull. . .
o reducibility — If the representation can be reduced to block-diagonal the matrix B € GL(n, C). the application
form, it is called reducible. Re: G — GL(n,C),
Definition g — BR(g)B™,

For a group representation R of a group G, we have:

is called similarity transformation of R generated by B.

i) When R is a one-dimensional representation, it is irreducible.

ii) In case the dimension of R is greater than one, if there exists a
similarity transformation Rpg in which all the matrices are written in A similarity transformation for a group representation is, by its turn,
block-diagonal form, the representation R is called reducible, also a group representation of the same group G.
otherwise R is irreducible.

X X X e .
X X x Definition
. . X X X . . . . ..
Bloco-diagonal form: . Cox Two representations R; and R, of a group G are called similar ou
. X X . . . . . . .
X x equivalent when there exists a matrix B such that R, is a similarity
transformation of R; generated by B.
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Classification of Representations Classification of Representations
A similarity transformation is always invertible. Indeed
-1 -1
Re(g) = BR(g)B™" <= B "Rg(g)B = R(g). Example
. . . ; — 2 31 o ;
Similarity transformatrions appear naturaly in base changes. Assume a and Let G be the_ cyc.llc group G4 = {e,a,a%, a°} = Zy, of order four, consider
b are two vectors related by b = Aa and perform a chnage of basis now the application
ar~a =Baeb+— b = Bb. Then
10 0 1
¢—~\lo1) 77 -10)
b=Aa— Bb= BAa— Bb=BAB 'Ba— b = A'd -
; -1 0 0 -1
with 22 : 23 .
A = BAB™!. 0 -1 10
That means, under the change of basis defined by B the matrix A This is an isomorphism between C4 and a multiplicative matricial group.
tranforms as A — A’ — BAB-1. This is a faithful matricial representation of Cy; the above matrices
An important property which remains invariant under similarity reproduce the group multiplicative table.
transformations is the matricial trace

tr(BAB™1) = tr(B"!BA) = trA.
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Group Representations Classification of Representations

In the example of the C4 representation, at first we cannot tell its

irreducibility, because the matrices associated to the elements a and a3 are

not diagonal.

(10 (01
e~—~\o1) ° -1 0 )

2, (-1 0 s, (0 -1
a o -1/ @ 1 0 /-

However, a similarity transformation with

diagonalizes immediately all matrices

(1o (i

€ 01 )" a 0 —i )
) “1 0 s —i 0
a—>(0_1, &= 4 ;)

epresenta is reducible. Indeed. irreducible representations
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Group Representations Character Tables
Character Tables
Definition

Given a representation k of a finite group G, we define its character

x* 1 G — C as the complex function
x5 =1tr Ak,
Encontro com Ciéncias 13 /71
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Character Tables

Given a group G and a linear representation I', we know that the trace of
the group element associated matrices are invariant by similarity
transformations. We may go further and observe that this trace is the
same for all elements in a conjugation class. Therefore we may define the
character for group elements as well as for class congugation.

That is:
in practice the character is the matricial trace.
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Group Representations Character Tables

Given a representation of a finite group G, the elements of a
conjugation class possess all the same character.

The character function of a finite group satisfies
X (gat) = (g

for all g, € G.

Definition
Given a representation k of a group G, the character associated to a
conjugation class Cg is the character of an element g, € Cs.
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Group Representations Character Tables

Example

The Quaternium Group (Group of Quaternium Units)

k|1 -1 {i} {£} {£k}

11 1 1 1 1

211 1 1 -1 -1

31 1 -1 1 -1

401 1 -1 -1 1

52 —2 0 0 0
s (30) (9 %) e () k(9
(o a) =i (G ) dn (2 0) k(o )
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Example
The Alternating Group in four letters
k|1 3(12)(34) 4(123) 4(132)
1)1 1 1 1
2|1 1 w w?
3|1 1 w? w
413 -1 0 0
with w = e27//3
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Group Representations Character Tables

Example

Symmetric Group in 4 Letters
k|1 6(12) 8(123) 6(1234) 3(12)(34)
1)1 1 1 1 1
211 -1 1 -1 1
312 0 -1 0 2
413 1 0 -1 -1
513 -1 0 1 -1
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The Group of the Hamiltonian

Two operators A and B are considered similar when related bya a
similarity transformation
B = RAR™!

for some R.

The Hamiltonian H is invariant under R if
H =RHR!

which is equivalent to
[H,R] =0
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Symmetries in Quantum Mechanics The Group of The Hamiltonian

The Hamiltonian A is invariant under R if
H=RHR™:

which is equivalent to
[H.Rl =0

Symmetries in Quantum Mechanics The Group of The Hamiltonian

G(H) is a group:

We call R a Hamiltonian symmetry. We gather all Hamiltonian
symmetries in the set G(H) which happens to be a group

G(H)={Re L(V);RH =HR}
We call G(#H) the Hamiltonian Symmetry Group.
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Symmetries in Quantum Mechanics Representations in the Hilbert Space

In summary, we have the following ingredients

A Hilbert Space — V
An Hermitian Operator — H € L(V)
The Group of the Hamiltonian — G(H)
Symmetry Operators — R € G(H)

Consider the eigenvalue equation for H in the Hilbert Space V
He=Ep, p€V
For a given eigenvalue E, we define the subspace

V(E)={¢ e V; Hp=Eyp}
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Indeed, if R, are Rg Hamiltonian symmetries, we have

(RaRg)H = Ra(RgH)
Ra(HR3)
— (RaH)Rs
= (HRa)Rs = H(RaRs),

and the product R, Rz is also a symmetry of the Hamiltonian.

The identity operator / is a symmetry of the Hamiltonian, as | commutes
with any operator.
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Symmetries in Quantum Mechanics Representations in the Hilbert Space

For a given ¢ € V(E), we define £, as the subspace generated by all Ry
with R € G(H).

We assume normal degeneracy, which means
&, = V(E),Vy € V(E)

Let / = dimV/(E). The eigenvalue E defines an /-dimensional
representation of G(H).
Explicitly, choose a basis {¢1,..., ¢} for V(E and define the row vector

[Ro] = (Re1 Rypz2 ... Ryj)

as each Re; is a linear combination from ¢;, we have

[Ree] = [T (R)

That is, we have a /-dimensional representation of the group G(H).
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Symmetries in Quantum Mechanics Representations in the Hilbert Space

Note that the relation
[Re] = [T (R)

may be rewritten in components as

i
Rei = Z‘PJ(F(R))J'/

As the transformation R must preserve the norm

IRell = llell

I'(R) is a unitary representation of the group G(H).
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Symmetries in Quantum Mechanics Bloch’'s Theorem

Define the translation operator
R.(x) = ¢¥(x + a)
Since d(x + a) = dx e V(x + a) = V/(x), we have the symmetry

R:H =HR,
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Symmetries in Quantum Mechanics Bloch's Theorem

Bloch’s Theorem

Consider a onedimensional crystal with N repetition unities (sites)

K2 d?

Periodic Potential
V(x+a) = V(x)

p(x + Na) = ¢(x)
Hamiltonian Operator

h? d?
—%@ + V(X)

The vectors in the Hilbert Space are complex functions ¢ : R — C,
written simply as 1(x) (the wave function)
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Symmetries in Quantum Mechanics Bloch's Theorem

Since R, is a Hamiltonian symmetry, so is R} .
Thus RN = E and we have the symmetry group

G ={R,,R%,... RN-1 RN}

as a subgroup of G(H). Since G is Abelian, the irreducible representations
are one dimensional. The characters must obey [x(R,)]" =1, thus

YO(R,) = e2ri/N
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Supersymmetric Quantum Mechanics Supersymmetry in Quantum Mechanics

Symmetries in Quantum Mechanics Bloch’s Theorem

The character table maybe written as

{E} {R.} {R3} {RY2} {RYY}
M 1 1 1 e 1 1
M 1 w w2 . wh—2 wh-1
My | 10 w2 N4 ... oA w2
Y, 1 N1 -2 ... w? w

With a simple calculation, we may prove one of the two results of Bloch's
Theorem, namely the one with asserts that the solutions are periodic wave
functions enveloped by plane waves

iknx

on(x) = e up(x), com uny(x) = up(x + a)

Encontro com Ciéncias 30/ 71

h2 d2
“ o g2 VX) + Vx)e(x) = Ev(x). (3)
This is an ordinary second order differential equation for the complex wave
function (x) corresponding to the ket |t > € £. We may also interpret
(3) as an eigenvalue-eigenvector problem. Given a potential V/(x), we seek
for complex eigenfunctions )(x) and corresponding real eigenvalues E.
The real numbers E, being eigenvalues of the Hamiltonian, represent the
energy spectrum of the theory.
Let 10(x) be the ground state solution of (3), corresponding to the
minimal energy Eg. Redefining the potential as V_(x) = V/(x) — Ey we
may write
h? d?
- ﬂﬁiﬂo(x) + V_(x)¢o(x) =0 (4)

for the ground state and all energy levels get downshifted by Eg.
R. Thibes (UESB)
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Supersymmetric Quantum Mechanics Supersymmetry in Quantum Mechanics

Supersymmetry in Quantum Mechanics

Consider a spinless mass m particle on a line subjected to a one
dimensional real potential V/(x). Its quantum mechanical description
amounts to constructing an infinite dimensional Hilbert space £ of kets
|t) > representing the possible particle states. The particle dynamical
evolution is governed by the Hamiltonian

P2

H=_—+V(X 1

o V(X), 1)
where P and X are, correspondingly, the momentum and position
Hermitian operators acting on £. Since the potential is time independent,
the well-known separation of variables technique can be applied, leading,
in the position basis, to the time-independent Schrodinger equation

2 2
I L) + V() = Ev(x). @
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Supersymmetric Quantum Mechanics Supersymmetry in Quantum Mechanics

Associated to the potential V_ we can define the corresponding
Hamiltonian H™ given by

—h? d?

Labeling eigenfunctions and eigenvalues by the subscript n we have
explicitly

- h? d? _ o
H ”(/)n (X) = _%@wn (X) + V*(X)Qz[)n (X) = En wn (X)’ (6)
with E; = E, — Ep. As defined above the ground state of H™ can be
readily checked to have zero energy

H ¢y =0. (7)

Naturally the eigenstates of (3) are the same as those of (6) and
particularly 19 = 1) .
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Supersymmetric Quantum Mechanics Supersymmetry in Quantum Mechanics

Aiming to obtain a supersymmetric partner for the potential V_, we shall
now introduce the elements of supersymmetry in the theory. Inspired by
the well-known creation/anihilation operator technique of the harmonic
oscillator we begin factorizing the second order operator H™ into

H = A+A’, (8)
with,
h d
AT = ——+ W(x),
v2m dx ( )
—-h d
AT = —— 4+ W
W), ©)

where W(x) is a solution of the Riccati non-linear first order differential

equation

Vo = W3(x) — \/;Lmvv'(x). (10)

Encontro com Ciéncias 34 /71

Here H™ and V. are known respectively as the SUSY partners of H~ and
V_. As can be easily checked, AT and A~ are the adjoint of each other,
while both Hamiltonians HT and H~ are Hermitian semi-positive-definite
operators. In the following, let us figure out how the eigenvalues and
eigenfunctions of H~ and H™T are interrelated. Denoting the
eigenfunctions of H=(H™) by ¢, (¥) we write

g E

Concerning solutions ¢& to AT¢pT = A=¢~ = 0, we may write

m/w ] (16)

¢F ~ exp

and particularly ¢ ~ (cb_)_l. That means if ¢~ is normalizable, ¢ is
not. We assume ¢~ to be normalizable and consider ¢~ = ;" which
satisfies

H g = AT(A ¢y ) =0. (17)
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Supersymmetric Quantum Mechanics Supersymmetry in Quantum Mechanics

The quantity W(x) is called the superpotential associated to the original
potential V/(x) in (3) and satisfies the commutation relation

2h
V2m

Notice that if a ground state eigenfunction 1y satisfying (4) for a particular
one-dimensional potential V/(x) is known, one can immediately write

h 7vbo(x)
V2mo(x)

Switching the order between A~ and AT in (9) we define the operator

A7 AT] = W'(x). (11)

W(x) =

(12)

H+:A_A+:—h—2d—2 V. 13
= 2de2 + + ( )

V, = —W/ + W2, (14)
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Supersymmetric Quantum Mechanics Supersymmetry in Quantum Mechanics

Explicitly we write

g (x) = Cexp

-yam / W(x)dx] , (18)

with

[ axtugiz=1. (19)

Therefore, considering the eigenvalues in (15) ordered by increasing value
of energies, we must have £, = 0 and EJ > 0. Observing that

HY (A7, ) = E; (A7), (20)

and comparing with the second equation of (15) we see that (i) the
spectrum of H™ coincides with that of H~ with the sole exception of

E, = 0 and (ii) the eigenfunctions of H are proportional to A=, .
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Supersymmetric Quantum Mechanics Example: Infinite Square Well Potential

Supersymmetric Quantum Mechanics Supersymmetry in Quantum Mechanics

We thus write
E,T:E;H,nzo, (21)

and 1
U = ———AU,, n>0. (22)

n
By applying AT to both sides of the last equation it can be inverted to
1
VET

Y1 = ATyt n>0. (23)
We see that the A~ and AT operators connect H~ and H™ eigenstates
with the same energy. Knowledge of the eigenstates and eigenvalues of
one of the Hamiltionians H* leads to the knowledge of the corresponding
solution for its partner. In the following sections we apply this formalism
to specific one dimensional potentials.
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Non-positive energy eigenvalues lead to wave solutions which cannot
match continuity at x| = a, unless 1) = 0 which is not an allowed
eigenvector by definition. Therefore we must have E > 0. Defining

2mE
k=/2m

we write the general solution for (25) as
Y(x) = Acos kx + B'sin kx . (26)

The boundary condition 1 (a) = 1)(—a) = 0 enforces either B = 0 with
ka = (2n+1)m/2 or A =0 with ka = nr for natural n.
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Supersymmetric Quantum Mechanics Example: Infinite Square Well Potential

Infinite Square Well Potential

In this section we illustrate the previously discussed central SUSYQM ideas
in the simple infinite square well potential, also known as “particle in a box
potential”’. We start with the time-independent Schrédinger equation (3)
with the potential V/(x) given by

V(X):{ 0, ’X|§a; (24)

00, |x|>a.

The positive real parameter a, with length dimension, characterizes the
well potential width. The wave function vanishes for |x| > a confining thus
the particle inside the “box” |x| < a. For |x| < a, equation (3) reduces to

d? 2mE
Oy = 2 ). (25)
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Supersymmetric Quantum Mechanics Example: Infinite Square Well Potential

Therefore, labelling the solutions by n € N in increasing order of energy
value, we have

222
7Th 2
E, = 8ma2n’ n=123...,
_ Bncos[%] , forn=1,3,5...,
Yn = { Bysin [ZX] , forn=2,4,6,... , (27)

By subtracting the ground state energy and shifting n to n+ 1 we get

232
_ mh
En = Wﬁ(n+2), n:0,1,2,...,
1
C, cos ("J;a)” , forn=20,2,4,...,
Y, = . [(n+1)mx (28)
Cpsin o , forn=1,3,5 ...
according to the previous SUSY notation.
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The superpotential can be readily obtained from (12) as

W(x) = \/%tan (g) , (29)

and the SUSY partner potential (14) reads

2
Vi(x) = h 7r2 [2 sec? (LX) — 1} ) (30) Further, the corresponding eigenvalues, obtained from (21), are easily
8ma 2a found to be E = ‘;’;jf; E1+ = %ng and E2Jr = 5Eg“.

The potential V(x) in (30) can be promptly recognized as the
Poschl-Teller potential.

Now we may use our knowledge of the solution to the infinite square well
potential (28) and its corresponding superpotential (29) to generate the set
of solutions (23) to the Poschl-Teller potential (30). For instance, for the
first three eigenfunctions of H, an explicit calculation using (23) leads to

war = cos? (WX)

Thus we see in this example that knowledge of the solution of the simpler
eigenvalue problem for H™ enables one to readily solve the more involving
Poschl-Teller potential problem.

2a
+ . X ™
P = sin{—]cos(—
a 2a
4 X .2 X
Y5 = 4cos (— —b5sin” ( — (31)
2a a
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Supersymmetric Quantum Mechanics Supersymmetry Operators Supersymmetric Quantum Mechanics Supersymmetry Operators

Supersymetric Operators

The partner Hamiltonians are given by

- 0 0 [0 AT
Ho=ATA- Q :(A— 0> and Q+:<o o)

which upon multiplication result in

H.=A A"
Note that the expectation values for these operators are always o+ —(0 0 +0— — ATA= 0
[ @ QT = 0 A AT QTR = 0 0
non-negative
< PHzlp > = < ¢|ATAT|p > that is

= (< ¢lAF)(ATI¢ >) = [|[ATlo > [ =0 _ _ [ ATAT 0 H. 0
Qer+erQ :< 0 A—A+>:< 0 /-/+>

Now introduce two new operators QT given by
__ 0 O +_ (0 A
o=(20) m a=(2%)
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Supersymmetric Quantum Mechanics Supersymmetry Operators

Define a Hamiltonian in matrix form as

o H- 0\ _[(AA 0
Lo H )T 0o AaAf

We promptly note that
H=Q Q"+Q"Q  ={Q~,Q"}
Furthermore
(@) =0

and
[QF,H] = QFH - HQ* =0

The property [@F, H] = 0 signals an underlying symmetry.

Encontro com Ciéncias
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Global Symmetries
Internal rigid symmetry groups are compact Lie groups space-time

independents used in field or particles classification
For g € G and ® a multiplet, we have

®(x) = U(g)*(x)

explicitly in indices
®a(x) = Uap(g)®b(x)

with
(¢37 q)b) = 5ab

We say we have a Lagrangian symmetry when

L(U(g)®) = L(®)

R. Thibes (UESB) Group Representations in QM and GT Encontro com Ciéncias

46 / 71

49 /71

Supersymmetric Quantum Mechanics Supersymmetry Operators

By defining the dublets

( w;o(x) >

we see that Q* act like ladder operators

Q_<¢;(x)> _ ( 0 0><w;(x)>
0 - A" 0 0

= (e )= (oiem )

T ONATY () ) T e (x)

o+ 0 B 0 At 0
Yr(x) )~ \0 0 P (x)
_ < At (x) ) _ < Vpy1(x) )
0 0
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Gauge Groups in Field Theory Global Symmetries

To say that the transformation is rigid or global is to say that it does not
depend on the space-time coordinates, i.e.,

9, U(g)®(x) = U(g)0.®(x)

Naturally, regarding the space-time, we assume the holding of
Poincare symmetry

(U(a,\)®)(x) = D(M)S(A™*(x — a))

Example

L = 9@y +3(0u8)* + V(9)

+ [maﬁiad),@ + ggﬁd_)adjﬁﬁba + fjﬁ&a”ﬁwﬁwﬁd)k + h.C.]
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Gauge Groups in Field Theory Global Symmetries

Even when the transformation

CD;,,(X) — Uab(g)cbb(x)

is not an exact Lagrangian symmetry, we may use it for classification

purposes for instance as in the famous case of SU(3)-flavor (the eightfold

way).
s = 0 n P
s=—1 3 »t
qg=1
s = —2
=" =0
q=-1 q=0

Encontro com Ciéncias

R. Thibes (UESB) Group Representations in QM and GT
Gauge Groups in Field Theory Global Symmetries

Therefore _
8HJ;§ = (Oumu)k® + 7,1k (0, P)
oL oL oL
= Bl + b = (&)
thus a1
—— =0=0,j =0
8ak MJ#

and for each generator of the continuos group of symmetries we have a
conserved current with corresponding charge

Q= / x5 (x)

satisfying
0
il -0
5t Q«k
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Gauge Groups in Field Theory Global Symmetries

When the transformation

®4(x) = Uan(g)Pb(x)

is a genuine symmetry, Noether's Theorem leads to the current conservatio

Indeed, define /; by

<£(U(g)¢(x))a> = (k@(x))" = (177)9(x)
k a=0

and define the current

= mul® = 75190 0P

where
Oy — g0
Ty = =
12 ) 12 12
9%,(x)
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Local Symmetries
The gauge principle for electromagnetism
1.
Lem = L(®,D,®) — ZFWF
Fu = 0,A, — 0,A,
1
Fio = Ei, Fj = SeiBx
The covariant devivative in this case reads
D, = 9,0 + iA,Qd
with Qb, = e,d..
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Gauge Groups in Field Theory Local Symmetries Gauge Groups in Field Theory Local Symmetries

We begin with a matter Lagrangian, invariant with respect to a Lie group
G.

We have invariance with respect to gauge transformations L(®(x), 0,®(x)) = L(U(g)®P(x), U(g)Iu®(x))

. Introducing the vector potentials AX, one corresponding to each generator
o* of G, we define the covariant derivative

Note that the potential A, is introduced in the covariant derivative

precisely to get the covariance of the derivatives in the matter terms in

such a way that

D, = 9,0+ e(A,-0)®

or

. . a _ a k _abgyb
DH(AQ)G’Q(X)QQD(X) — elH(x)QD#(A)q)(X) (DHCD) = @Ld) + eAuak $

such that

. . L . U(g(x))Du®(x) = D, U(g(x))®(x)
The idea now it to mimic this process to other Lie groups. _
or equivalently

Du(A#) = U(g(x)) Du(A)U™ (g(x))
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Similarly to the electromagnetic case, we construct now a kinetic term to

Developing the previous relation, we obtain the gauge field transformation the gauge fields and define

g _ -1 -1
Ay = UAU + UguU Fuw = 0uA, — 8,A, + e[Au, A

which generalizes the old ones .
from which we see

_ -1
Ap— UALUTY e Au— AL+ 0,0 Fuu(A%) = UFw (AU
That is, contrary to the Abelian case, the tensor F,, is not gauge

In thiw way, we obtain invariant. But it is covariant, so that the Lagrangia

L(®(x). Du(x) = L(U(g(:))9(x). Ulg(x)) D,(x)) Lo - —LuF P4 L(0.0,0)
)T T » P

is invariant.
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In order to discuss the gauge fixing condition let us first remind some basic
properties of the maximal Abelian gauge in the case of SU(2). The gauge
field is decomposed into off-diagonal and diagonal components, according
to

A=A T+ AT, (32)
where T2, a = 1,2, denote the off-diagonal generators of SU(2), while T3
stands for the diagonal generator,

{Ta’ Tb:| = {_:ab T3,
[T3,T°] = ie®Th, (33)
where
Eab — 8ab3 ,
é_acgad — 5cd ) (34)
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As it is easily checked, the classical action (38) is left invariant by the
gauge transformations

0AL = —Djbwb — gaabAZw ,

0A, = —Ouw—ge?Alw®. (39)

The maximal Abelian gauge is obtained by demanding that the
off-diagonal components A7 of the gauge field obey the nonlinear condition

b ab
DAL =0, (40)
which follows by requiring that the auxiliary functional

RIA] = / dxALAS (a1)

is stationary with respect to the gauge transformations (39).
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Similarly, for the field strength one has
Fu=F3, T+ Fu T3, (35)
with the off-diagonal and diagonal parts given, respectively, by
Fi, = DIPAL—DPA", (36)
Fuo = 0uA, — 0,A, + g AZAL

where the covariant derivative Djb is defined with respect to the diagonal
component A,

Db = 0,0%° — ge®PA, . (37)
Thus, for the Yang-Mills action in Euclidean space one obtains
1
Sym =13 / d*x (F3,F2, + FuFu) - (38)
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Moreover, as it is apparent from the presence of the covariant derivative
Dﬁb, equation (40) allows for a residual local U(1) invariance
corresponding to the diagonal subgroup of SU(2). This additional
invariance has to be fixed by means of a suitable gauge condition on the
diagonal component A, which will be chosen to be of the Landau type,
also adopted in lattice simulations, namely

9uA, =0. (42)

Let us work out the condition for the existence of Gribov copies in the
maximal Abelian gauge. In the case of small gauge transformations, this is
easily obtained by requiring that the transformed fields, eqgs.(39), fulfill the
same gauge conditions obeyed by (AM,AZ), i.e. eqs.(40), (42).
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Thus, to the first order in the gauge parameters (w,w?), one gets

—D;’bDﬁcwc — gstDZb (Aiw) (43)
—I—ge"bAzauw + gzeabzeCdAzAde = 0, (44)
—Pw — gebo), (A;M) — 0, (45)

which, due to eqs.(40),(42) read
Mbyb = 0, (46)
—8Pw — ged), (A;wb) — 0, (47)

with M?® given by

M = —DFDP — g?e¥ P  AC AL (48)

The operator M?® is recognized to be the Faddeev-Popov operator for the
off-diagonal ghost sector.
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Also, from eq.(49) it follows that the new variable &
O=w-+ geab@ A3 b (50)
92\ ’
obeys
0 =0. (51)

The change of variable (50) can be performed in the partition function
expressing the Faddeev-Popov quantization of Yang-Mills theories in the
maximal Abelian gauge. As the corresponding Jacobian turns out to be
independent from the fields, transformation has the effect of decoupling
the diagonal ghost fields from the theory. As a consequence, the
corresponding two point function is not affected by the restriction to the
Gribov region.
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It enjoys the property of being Hermitian and, is the difference of two
positive semidefinite operators given, respectively, by —DZCDbe and
g2€365bdAfLAz. Also, one should remark that the diagonal parameter w
appears only in the eq.(47), in a form which allows us to express it in terms
of the solution of the first equation (46). More precisely, once eq.(46) has
been solved for A, A7, wP, for the diagonal parameter w one can write

W= —geabgg (A;M) . (49)

This feature means essentially that the diagonal parameter w has no
special role in the characterization of the Gribov copies, whose properties
are encoded in eq.(46).
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Let us face now the implementation in the Feynman path integral of the
restriction of the domain of integration to the Gribov region Cp, defined as
the set of fields fulfilling the gauge conditions (40), (42) and for which the
Faddeev-Popov operator M?” is positive definite, namely

Co = {Au, A2, 9,A, =0, DAL =0,

Mab — _DZCDﬁb o g253€5bdAZAZ > 0} ) (52)

The boundary, /1, of the region Cgy, where the first vanishing eigenvalue of
M?P appears, is called the first Gribov horizon. The restriction of the
domain of integration to this region is supported by the possibility of
generalizing to the maximal Abelian gauge Gribov's original result stating
that for any field located near a horizon there is a gauge copy, close to the
same horizon, located on the other side of the horizon. We have found
useful to devote the whole Appendix 9 to the details of the proof of this
statement.
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Thus, for the partition function of Yang-Mills theory in the maximal
Abelian gauge, we write

z = / DA2DA, det (Mab(A)) 5 (D;bA,‘;) 5 (9,A.) €~ 5MV(Co) |
(53)
where the factor V(Cp) implements the restriction to the region Cy. The
factor V(Cp) can be accommodated for by means of a no pole condition on
the off-diagonal ghost two-point function, given by the inverse of the
Faddeev-Popov operator M?P.
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In order to study the gluon propagator, it is sufficient to retain only the
quadratic terms in expression (56) which contribute to the two-point
correlation functions <AZ(k)AS(—k)> and (A,(k)A,(—k)). Thus

Zquadr = N / DAZDA, 2d§ e(¢ 108 (= Saquaar—¢o(0,4)) (57)

2mi
where A is a constant factor and Syyuadr Stands for the quadratic part of
the quantized Yang-Mills action, namely

Squadr = %Z <AZ(q) <q25m/ - (1 - i) quqy> Ai(—q))
33 (40 (0~ (1-5) aua ) Ad-a)) (59)
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We are now ready to discuss the behavior of the gluon propagator when
the domain of integration in the Feynman path integral is restricted to the
region Cp, eq.(53). The factor V(Cp) implementing the restriction to Cy is
given by

V(Co) =0[1—0(0,A)] , (54)

where 0(x) stands for the step function. Moreover, making use of the
integral representation

0(1 — o(0,A)) = /IOO+E 70’; e¢(1=0(0,A) (55)
—ioco+e 27”C

for the partition function Z we get
d
Z = [ DADA, % det (M?2(A))

2 (56)
exp (g — Syn — & (D3PAR)? — L (0,A,) — Co 0, A))
where the gauge parameters a and /3 have to be set to zero at end, i.e. «,
B — 0, to recover the gauge conditions (40), (42).
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Taking the thermodynamic limit, V — oo, and introducing the Gribov
parameter y

< SV (59)
2\/ ) 9

we get the gap equation

3 2/ d4q 1
b — =1, 60
4g (27T)4 gt +* (60)

where the term 1/(y has been neglected in the thermodynamic limit. To
obtain the gauge propagator, we can now go back to the expression for
Zquadr Which, after substituting the saddle point value ¢ = (o, becomes

Zo N / DAZ DA, e~ (Ze (@) (@A (-0 Xy AL P )AL (-4))

q
(61)
with
ol 1
Q,ur/(')'a q) = (Cl2 =+ 2) 5;w - (1 - 6) q,LLqV . (62)
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Evaluating the inverse of Q,. (7, q) and of P,,(q), and setting the gauge

parameters «,( to zero, we get the gluon propagator for the diagonal and

off diagonal components of the gauge field, namely
q° ( 5 ququ>
gt + A4\ q2 ’

a a 1 q qIJ
(@A) =% (50— %)
One sees that the diagonal component, eq.(63), is suppressed in the
infrared, exhibiting the characteristic Gribov type behavior. The
off-diagonal components, eq.(64), remains unchanged.

(Au(@)Au(=q)) =
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